作物学报 ›› 2013, Vol. 39 ›› Issue (02): 258-268.doi: 10.3724/SP.J.1006.2013.00258
闫宁,谢尚潜,耿青春,徐宇,李广军,刘兵,汪霞,李其刚,章元明*
YAN Ning,XIE Shang-Qian,GENG Qing-Chun,XU Yu,LI Guang-Jun,LIU Bing,WANG Xia,LI Qi-Gang,ZHANG Yuan-Ming
摘要:
以溧水中子黄豆(P1)和南农493-1(P2)组合的504个正反交F2:3~F2:7家系群体为材料, 调查大豆粒长、粒宽、粒厚、长宽比、长厚比、宽厚比和百粒重性状在2007—2011年的表型观测值, 扫描F2群体SSR分子标记信息, 用Bayes分层广义线性模型方法检测了上述性状的主效QTL、QTL´环境(QE)互作、QTL´细胞质(QC)互作和QTL´QTL(QQ)互作。共检测到89个主效QTL、33对QE、20对QC和35对QQ互作。上述7个性状的主效QTL分别有7、10、10、19、19、17和7个; QQ互作分别有1、10、6、0、6、9和3对, 没有检测到显性´显性互作; QE互作分别有5、7、6、3、6、2和4对; QC互作分别有2、1、3、8、4、2和0对。主效、QQ互作、QC互作和QE互作QTL的总贡献率分别为12.42%~61.79%、0~23.21%、0.35%~1.51%和0~14.16%, 表明主效QTL贡献最大, QQ互作次之, QE互作最小。各类QTL都有一因多效现象, 同一基因座可通过不同方式影响性状表达。这些结果揭示了大豆粒形性状的遗传基础, 为标记辅助育种提供了参考信息。
[1]Lai Y-C(来永才), Li W(李炜), Wang Q-X(王庆祥), Li X-H(李霞辉), Qi N(齐宁), Lin H(林红). Innovation and utilization of new high isoflavone resource of wild soybean in Heilongjiang province: I. analysis of isoflavone content and relevant of characters. Soybean Sci (大豆科学), 2006, 25(4): 414–416 (in Chinese with English abstract)[2]Wang S-M(王曙明). The effect of grain size within the genotype on soybean protein and oil content. Soybean Bull (大豆通报), 1996, (1): 7 (in Chinese)[3]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004, 137: 325–332[4]Ayoub M, Symons S J, Edney M J, Mather D E. QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet, 2002, 105: 237–247[5]Gegas V C, Nida A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. Plant Cell, 2010, 22: 1046–1056[6]Zheng Y-L(郑有良), Lai Z-M(赖仲铭), Yang K-C(杨克诚). The relationship between maize seed traits and seed size and the study on the genetics. Sichuan Agric Univ (四川农业大学学报), 1985, 3(2): 73–79 (in Chinese)[7]Salas P, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet, 2006, 113: 1459–1466[8]Gong L-H(宫李辉), Gao Z-Y(高振宇), Ma B-J(马伯军), Qian Q(钱前). Progress of genetic research on grain shape on rice. Chin Bull Bot (植物学报), 2011, 46(6): 597–605 (in Chinese with English abstract)[9]Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579–19584[10]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630[11]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028[12]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18, 1199–1209[13]Nelson R L, Wang P. Variation and evaluation of seed shape in soybean. Crop Sci, 1989, 29: 147–150[14]Cober E R, Voldeng H D, Fregeau-Reid J A. Heritability of seed shape and seed size in soybean. Crop Sci, 1997, 37: 1767–1769[15]Liang H-Z(梁慧珍), Li W-D(李卫东), Wang H(王辉), Fang X-J(方宣钧). Genetic effects on seed traits in soybean. Acta Genet Sin (遗传学报), 2005, 32(11): 1199–1204 (in Chinese with English abstract) [16]Liang H-J(梁慧珍), Wang S-F(王树峰), Yu Y-L(余永亮), Wang T-F(王庭峰), Gong P-T(巩鹏涛), Fang X-J(方宣钧), Liu X-Y(刘学义), Zhao S-J(赵双进), Zhang M-C(张孟臣), Li W-D(李卫东). Mapping quantitative trait loci for six seed shape traits in soybean. Henan Agric Sci (河南农业科学), 2008, 45(9): 54–60 (in Chinese)[17]Xu Y, Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet, 2011, 122: 581–594[18]Zhang W-Y(张文英), Cheng J-Q(程君奇), Zhu J(朱军), Wu W-R(吴为人). Epistasis and its application in genetics and breeding. China J Bioinform (生物信息学), 2004, 2: 39–41 (in Chinese with English abstract)[19]Lei D-Y(雷东阳), Xie F-M(谢放鸣), Xu J-L(徐建龙), Chen L-Y(陈立云). QTLs mapping and epistasis analysis for grain shape and chalkiness degree of rice. Chin J Rice Sci (中国水稻科学). 2008, 22(3): 255–260 (in Chinese with English abstract)[20]Jiang L-R(江良荣), Wang W(王伟), Huang J-Y(黄建勋), Huang R-Y(黄荣裕), Zheng J-S(郑景生), Huang Y-M(黄育民), Wang H-C(王侯聪). Analysis of epistatic and QE interaction effects of QTLs for grain shape in rice. Mol Plant Breed (分子植物育种), 2009, 7(4): 690–698 (in Chinese with English abstract)[21]Wang W(王伟), Ye Z-Y(叶志云), Zheng J-S(郑景生), Huang Y-M(黄育民), Huang R-Y(黄荣裕), Wang H-C(王侯聪), Jiang L-R(江良荣). Mapping QTLs for rice grain shape with QTL×environment interactions and epistatic effects analysis. Acta Bot Boreal-Occident Sin (西北植物学报), 2010, 30(7): 1344–1350 (in Chinese with English abstract)[22]Yi N, Banerjee S. Hierarchical generalized linear models for multiple quantitative trait locus mapping. Genetics, 2009, 181: 1101–1113[23]Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statist Soc, Ser B (Methodological), 1995, 57: 289–300[24]Lin Z-X(林忠旭), Feng C-H(冯常辉), Guo X-P(郭小平), Zhang X-L(张献龙). Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton. Sci Agric Sin (中国农业科学), 2009, 42(9): 3036–3047 (in Chinese with English abstract)[25]Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M. Short grain 1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol, 2012, 158: 1208–1209[26]Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PloS one, 2012, 7: e34231[27]Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock W J, Dennis E S, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J, 2010, 63: 670–679[28]Hughes R, Spielman M, Schruff M C, Larson T R, Graham I A, Scott R J. Yield assessment of integument-led seed growth following targeted repair of auxin response factor 2. Plant Biotechnol J, 2008, 6(8): 758–769[29]Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 2008, 148: 1201–1211[30]Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14: 1359–1375[31]Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell, 2003, 15: 2514–2531[32]Niu Y(牛远), Xu Y(徐宇), Li G-J(李广军), Wang Y-Q(王云清), Liu X-F(刘晓芬), Li H-N(李河南), Wei S-P(魏世平), Zhang Y-M(章元明). Domestication of seed size and shape traits in soybean. Soybean Sci (大豆科学), 2012, 31(4): 68–75 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
[15] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
|