作物学报 ›› 2013, Vol. 39 ›› Issue (02): 249-257.doi: 10.3724/SP.J.1006.2013.00249
卞云龙*,顾啸,孙东雷,王益军,印志同,王艳秋,邓德祥
BIAN Yun-Long*,GU Xiao,SUN Dong-Lei,WANG Yi-Jun,YIN Zhi-Tong,WANG Yan-Qiu,DENG De-Xiang
摘要:
[1]Coors J G. Findings of the Wisconsin maize silage consortium. In: Proceedings of Cornell Nutrition Conference for Feed Manufacturers, Rochester, New York, Cornell University, Ithaca, New York. 1996. pp 20–28[2]McDonald P, Henderson N, Heron S J E. The Biochemistry of Silage, 2nd edn. Marlow, United Kingdom: Chalcombe Publications, 1991. pp 70–120[3]Johnson L M, Harrison J H, Davidson D, Mahanna W C, Shinners K. Maize silage management: Effects of hybrid, maturity, inoculation, and mechanical processing on fermentation characteristics. J Dairy Sci, 2003, 86: 287–308[4]Li C-X(李翠霞). The Effects of Lactic Acid Bacteria on the Quality and Microbial Fermentation of Whole Maize Silage. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)[5]Wilkinson J M, Chapman M P F, Wilkins R J. Interrelation-ships between pattern of fermentation during ensilage and initial crop composition. In: Proceeding of the14th International Grassland. Lexington, USA, 1983. pp 631–634[6]Froetschel M A, Ely L O, Amos H E. Effects of additives and growth environment on preservation and digestibility of wheat silage fed to Holstein heifers. J Dairy Sci, 1991, 74: 546–556[7]Zhang D-Y(张德玉), Li Z-Q(李忠秋), Liu C-L(刘春龙). Progress in the study of infection factors on silage quality. Acta Ecol Anim Domastici (家畜生态学报), 2007, 28(1): 109–112 (in Chinese with English abstract)[8]Bai Q-L(白琪林). Inheritance of Stove Quality Traits and Their Determination by Near-Infrared Reflectance Spectroscopy (NIRS) in Silage Maize (Zea may L.). PhD Dissertation of China Agricultural University, 2005 (in Chinese with English abstract)[9]Welton F A, Morris V H, Hartzler A J. Distribution of moisture, dry matter, and sugars in the maturing maize stem. Plant Physiol, 1930, 5: 555–564[10]Van Reen R, Singleton W R. Sucrose content in the stalks of maize inbreds. Agron J, 1952, 44: 610–614[11]Widstrom N W, Carr M E, Bagby M O, Black L T. Distribution of sugar and soluble solids in the maize stalk. Crop Sci, 1988, 28: 861–863[12]Li F-H(李凤华), Dong H-H(董海合), Wu J-Q(吴俊强), Yang Z-S(杨兆顺), Lou C-J(楼辰军), Qian F(钱芳), Guo D-S(郭冬生), Hao Z-B(郝志宝). Selection of new maize combination with high content sugar material. J Maize Sci (玉米科学), 2007, 15(3): 19–21 (in Chinese with English abstract)[13]Bian Y-L(卞云龙), Du K(杜凯), Wang Y-J(王益军), Deng D-X(邓德祥). Distribution of sugar content in maize stalk. Acta Agron Sin (作物学报), 2009, 35(12): 2252–2257 (in Chinese with English abstract)[14]Bai Q-L(白琪林), Chen S-J(陈绍江), Dai J-R(戴景瑞). Stalk quality traits and their correlations of maize inbred lines in China. Acta Agron Sin (作物学报), 2007, 33(11): 1777–1781 (in Chinese with English abstract)[15]Bai Q-L(白琪林), Shi P(石平), Zhang Y(张耀). Stalk quality traits evaluation and their correlation analysis with maize inbred lines in China. J Shanxi Agric Sci (山西农业科学), 2009, 37(4): 14–17(in Chinese with English abstract)[16]Bian Y-L(卞云龙), Du K(杜凯), Wang Y-J(王益军), Deng D-X(邓德祥), Cheng J-R(程金荣), Kong Y-B(孔佑兵). Screening and evaluation for high sugar content of stem in maize germplasm. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 315–319 (in Chinese with English abstract)[17]Kruse S, Herrmann A, Kornher A, Taube F. Genotypic and environmental variation in water soluble carbohydrate content of silage maize. Field Crops Res, 2008, 106: 191–202[18]Bian Y-L(卞云龙), Du K(杜凯), Gu X(顾啸), Wang Y-J(王益军), Yin Z-T(印志同), Sun D-L(孙东雷), Deng D-X(邓德祥). Genetic effects on sugar content of stalk in maize. J China Agric Univ (中国农业大学学报), 2012, 17(1): 17–19 (in Chinese with English abstract)[19]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agron Sin (作物学报), 2000, 26(4): 385–391(in Chinese with English abstract)[20]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 224–260 (in Chinese)[21]Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157–163[22]Wang J K, Gai J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122: 9–18[23]Ge X-X(葛秀秀), Zhang L-P(张立平), He Z-H(何中虎), Zhang Y-M(章元明). The mixed inheritance analysis of polyphenol oxidase activities in winter wheat. Acta Agron Sin (作物学报), 2004, 30(1): 18–20 (in Chinese with English abstract)[24]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33(2): 171–180[25]Feng G(丰光), Liu Z-F(刘志芳), Li Y-Y(李妍妍), Xing J-F(邢锦丰), Huang C-L(黄长玲). Genetics of lodging in tolerance to maize stem puncture. Acta Agron Sin (作物学报), 2009, 35(11): 2133–2138 (in Chinese with English abstract)[26]Zhang Q-W(张启武), Jiang J-H(江建华), Yao J(姚瑾), Hong D-L(洪德林). Characterization and genetic analysis of grain filling rate of Ludao and restorer line C-Bao in japonica rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2009, 35(7): 1229–1235 (in Chinese with English abstract)[27]Cheng Y(成颖), Li H-T(李海涛), Lü S-W(吕书文), Yang G-D(杨国栋). Genetic analysis of fruit length using mixed major gene plus polygenes inheritance model in Lycopersicon esculentum var. cerasiforme Alef. J Shenyang Agric Univ (沈阳农业大学学报), 2009, 40(1): 88–91 (in Chinese with English abstract)[28]Yan S-J(闫世江), Si L-T(司龙亭), Ma Z-G(马志国), Yang J-M(杨佳明), Zhang J-N(张继宁), Zhang J-J(张建军), Liu J(刘洁). Genetic analysis of seedling growth rate of cucumber under low temperature and weak light conditions. Sci Agric Sin (中国农业科学), 2010, 43(24): 5073–5078 (in Chinese with English abstract)[29]Lu F(卢峰), Zou J-Q(邹剑秋), Duan Y-H(段有厚), Lü X-L(吕香玲), Guo Y-H(郭玉华). Genetic analysis of stalk sugar content using mixed major gene plus poly-genes model in sweet sorghum. Chin Agric Sci Bull (中国农学通报), 2011, 27(9): 166–170 (in Chinese with English abstract)[30]Huang B-Y(黄冰艳), Zhang X-Y(张新友), Miao L-J(苗利娟), Liu H(刘华), Qin L(秦利), Xu J(徐静), Zhang Z-X(张忠信), Tang F-S(汤丰收), Dong W-Z(董文召), Han S-Y(韩锁义), Liu Z-Y(刘志勇). Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea L. Sci Agric Sin (中国农业科学), 2012, 45(4): 617–624(in Chinese with English abstract)[31]Zhang X, Li C Q, Wang X Y, Chen G P, Zhang J B, Zhou R Y. Genetic analysis of Cryotolerance in cotton during the overwintering period using mixed model of major gene and polygene. J Integr Agric, 2012, 11: 537–544[32]Widstrom N W, Bagby M O, Palmer D M, Black L T, Carr M E. Relative stalk sugar yields among maize populations, cultivars, and hybrids. Crop Sci, 1984, 24: 913–915[33]Natoli A, Gorni C, Chegdani F, Ajmone marsan P, Colombi C, Lorenzoni C, Marocco A. Identification of QTLs associated with sweet sorghum quality. Maydica, 2002, 47: 311–322[34]Bian Y L, Yazaki S J, Inoue M K, Cai H W. QTLs for sugar contentof stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China, 2006, 5: 736–744[35]Ritter K B, Jordan D R, Chapman S C, Godwin I D, Mace E S, Lynne McIntyre C. Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed, 2008, 22: 367–384[36]Murray S C, Sharma A, Rooney W L, Klein P E, Mullet J E, Mitchell S E, Kresovich S. Genetic improvement of sorghum as a biofuel feedstock I: quantitative loci for stem sugar and grain nonstructural carbohydrates. Crop Sci, 2008, 48: 2165–2179[37]Murray S C, Rooney W L, Hamblin M T, Mitchell S E, Kresovich S. Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome, 2009, 2: 48–62[38]Shiringani A L, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010, 121: 323–336[39]Guan Y A, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in sorghum. Euphytica, 2011, 182: 431–440 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[11] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[12] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[13] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
|