欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 249-257.doi: 10.3724/SP.J.1006.2013.00249

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米茎秆糖含量的遗传模式分析

卞云龙*,顾啸,孙东雷,王益军,印志同,王艳秋,邓德祥   

  1. 扬州大学 / 江苏省作物遗传生理重点实验室, 江苏扬州225009
  • 收稿日期:2012-06-27 修回日期:2012-09-14 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 通讯作者: 卞云龙, E-mail: byllfz@yahoo.com.cn, Tel: 0514-87972178
  • 基金资助:

    本研究由国家自然科学基金项目(31071426)和江苏高校优势学科建设工程资助项目资助。

Inheritance Analysis of Stalk Sugar Content in Maize

BIAN Yun-Long*,GU Xiao,SUN Dong-Lei,WANG Yi-Jun,YIN Zhi-Tong,WANG Yan-Qiu,DENG De-Xiang   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Yangzhou University, Yangzhou 225009, China
  • Received:2012-06-27 Revised:2012-09-14 Published:2013-02-12 Published online:2012-12-11
  • Contact: 卞云龙, E-mail: byllfz@yahoo.com.cn, Tel: 0514-87972178

摘要:

较高的茎秆糖含量有助于提高青贮玉米的饲料品质和适口性,本研究以YXD05398A-04两个高茎秆糖含量玉米自交系为母本,Y6-1低茎秆糖含量玉米自交系为父本,通过自交、杂交及回交产生2个组合的6个世代(P1P2F1F2BC1BC2);运用主基因+多基因混合遗传模型6个世代联合分析方法,探明控制玉米茎秆糖含量的遗传模型,并进行遗传参数估计。结果表明,玉米茎秆糖含量遗传受2对加性-显性-上位性主基因+加性-显性-上位性多基因共同控制。YXD053×Y6-198A-04×Y6-1两个组合的主基因遗传率分别为53.50%52.63%,多基因遗传率分别为7.96%17.31%,总遗传率分别为61.46%69.94%,显性度(h/d)均小于1。茎秆糖含量以主基因遗传为主,且主基因又以加性效应为主,但环境因素对茎秆糖含量的遗传有一定的影响。这一研究结果为玉米茎秆糖含量性状的基因定位和育种选择提供了理论依据。

关键词: 玉米, 茎秆糖含量, 主基因+多基因, 遗传

Abstract:

Increasing sugar content in silage maize stalk improves forage quality and palatability. However, the mechanism of inheritance of stalk sugar content in maize has not been clear yet. To this end, joint analysis of a mixed genetic model of both major gene and polygene was conducted to investigate the inheritance of stalk sugar content in maize. Maize inbred lines YXD053 (high sugar content, Brix = 11.32%), 98A-04 (high sugar content, Brix = 10.69%) and Y6-1 (low sugar content, Brix = 6.3%) were used as parents in this study. Stalk sugar content of three parents and four populations of F1, F2, BC1, and BC2 generated from two crosses of YXD053×Y6-1 and 98A-04×Y6-1, was surveyed. Results showed that sugar content in maize stalk was controlled by two major genes with additive-dominance-epistatic effects and polygene with additive-dominance-epistatic effects, and mainly governed by major genes. For cross YXD053×Y6-1, the heritabilities of major genes in BC1, BC2 and F2 were 34.52%, 52.94%, and 73.05%, respectively. The heritability of polygene could only be detected in BC2, which was 23.87%. For cross 98A-04×Y6-1, the heritabilities of major genes in BC1, BC2 and F2 were 60.49%, 28.79%, and 68.62%, respectively. The heritability of polygene was not detected in F2. The total heritability of major gene and polygene for crosses YXD053×Y6-1 and 98A-04×Y6-1 was 61.46% and 69.94%. The degree of dominance of major gene (h/d) in two crosses was less than one, and the additive genetic effects might play a more important role in breeding of hybrids with high stalk sugar content. Additionally, sugar content in maize stalk could be also subject to environmental factors. Results presented here provide valuable information for stalk sugar content improvement in silage maize breeding program, and lay a foundation for the following maize stalk sugar content QTLs mapping.

Key words: Maize, Stalk sugar content, Major gene and polygene, Inheritance

[1]Coors J G. Findings of the Wisconsin maize silage consortium. In: Proceedings of Cornell Nutrition Conference for Feed Manufacturers, Rochester, New York, Cornell University, Ithaca, New York. 1996. pp 20–28



[2]McDonald P, Henderson N, Heron S J E. The Biochemistry of Silage, 2nd edn. Marlow, United Kingdom: Chalcombe Publications, 1991. pp 70–120



[3]Johnson L M, Harrison J H, Davidson D, Mahanna W C, Shinners K. Maize silage management: Effects of hybrid, maturity, inoculation, and mechanical processing on fermentation characteristics. J Dairy Sci, 2003, 86: 287–308



[4]Li C-X(李翠霞). The Effects of Lactic Acid Bacteria on the Quality and Microbial Fermentation of Whole Maize Silage. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)



[5]Wilkinson J M, Chapman M P F, Wilkins R J. Interrelation-ships between pattern of fermentation during ensilage and initial crop composition. In: Proceeding of the14th International Grassland. Lexington, USA, 1983. pp 631–634



[6]Froetschel M A, Ely L O, Amos H E. Effects of additives and growth environment on preservation and digestibility of wheat silage fed to Holstein heifers. J Dairy Sci, 1991, 74: 546–556



[7]Zhang D-Y(张德玉), Li Z-Q(李忠秋), Liu C-L(刘春龙). Progress in the study of infection factors on silage quality. Acta Ecol Anim Domastici (家畜生态学报), 2007, 28(1): 109–112 (in Chinese with English abstract)



[8]Bai Q-L(白琪林). Inheritance of Stove Quality Traits and Their Determination by Near-Infrared Reflectance Spectroscopy (NIRS) in Silage Maize (Zea may L.). PhD Dissertation of China Agricultural University, 2005 (in Chinese with English abstract)



[9]Welton F A, Morris V H, Hartzler A J. Distribution of moisture, dry matter, and sugars in the maturing maize stem. Plant Physiol, 1930, 5: 555–564



[10]Van Reen R, Singleton W R. Sucrose content in the stalks of maize inbreds. Agron J, 1952, 44: 610–614



[11]Widstrom N W, Carr M E, Bagby M O, Black L T. Distribution of sugar and soluble solids in the maize stalk. Crop Sci, 1988, 28: 861–863



[12]Li F-H(李凤华), Dong H-H(董海合), Wu J-Q(吴俊强), Yang Z-S(杨兆顺), Lou C-J(楼辰军), Qian F(钱芳), Guo D-S(郭冬生), Hao Z-B(郝志宝). Selection of new maize combination with high content sugar material. J Maize Sci (玉米科学), 2007, 15(3): 19–21 (in Chinese with English abstract)



[13]Bian Y-L(卞云龙), Du K(杜凯), Wang Y-J(王益军), Deng D-X(邓德祥). Distribution of sugar content in maize stalk. Acta Agron Sin (作物学报), 2009, 35(12): 2252–2257 (in Chinese with English abstract)



[14]Bai Q-L(白琪林), Chen S-J(陈绍江), Dai J-R(戴景瑞). Stalk quality traits and their correlations of maize inbred lines in China. Acta Agron Sin (作物学报), 2007, 33(11): 1777–1781 (in Chinese with English abstract)



[15]Bai Q-L(白琪林), Shi P(石平), Zhang Y(张耀). Stalk quality traits evaluation and their correlation analysis with maize inbred lines in China. J Shanxi Agric Sci (山西农业科学), 2009, 37(4): 14–17(in Chinese with English abstract)



[16]Bian Y-L(卞云龙), Du K(杜凯), Wang Y-J(王益军), Deng D-X(邓德祥), Cheng J-R(程金荣), Kong Y-B(孔佑兵). Screening and evaluation for high sugar content of stem in maize germplasm. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 315–319 (in Chinese with English abstract)



[17]Kruse S, Herrmann A, Kornher A, Taube F. Genotypic and environmental variation in water soluble carbohydrate content of silage maize. Field Crops Res, 2008, 106: 191–202



[18]Bian Y-L(卞云龙), Du K(杜凯), Gu X(顾啸), Wang Y-J(王益军), Yin Z-T(印志同), Sun D-L(孙东雷), Deng D-X(邓德祥). Genetic effects on sugar content of stalk in maize. J China Agric Univ (中国农业大学学报), 2012, 17(1): 17–19 (in Chinese with English abstract)



[19]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agron Sin (作物学报), 2000, 26(4): 385–391(in Chinese with English abstract)



[20]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 224–260 (in Chinese)



[21]Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157–163



[22]Wang J K, Gai J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122: 9–18



[23]Ge X-X(葛秀秀), Zhang L-P(张立平), He Z-H(何中虎), Zhang Y-M(章元明). The mixed inheritance analysis of polyphenol oxidase activities in winter wheat. Acta Agron Sin (作物学报), 2004, 30(1): 18–20 (in Chinese with English abstract)



[24]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33(2): 171–180



[25]Feng G(丰光), Liu Z-F(刘志芳), Li Y-Y(李妍妍), Xing J-F(邢锦丰), Huang C-L(黄长玲). Genetics of lodging in tolerance to maize stem puncture. Acta Agron Sin (作物学报), 2009, 35(11): 2133–2138 (in Chinese with English abstract)



[26]Zhang Q-W(张启武), Jiang J-H(江建华), Yao J(姚瑾), Hong D-L(洪德林). Characterization and genetic analysis of grain filling rate of Ludao and restorer line C-Bao in japonica rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2009, 35(7): 1229–1235 (in Chinese with English abstract)



[27]Cheng Y(成颖), Li H-T(李海涛), Lü S-W(吕书文), Yang G-D(杨国栋). Genetic analysis of fruit length using mixed major gene plus polygenes inheritance model in Lycopersicon esculentum var. cerasiforme Alef. J Shenyang Agric Univ (沈阳农业大学学报), 2009, 40(1): 88–91 (in Chinese with English abstract)



[28]Yan S-J(闫世江), Si L-T(司龙亭), Ma Z-G(马志国), Yang J-M(杨佳明), Zhang J-N(张继宁), Zhang J-J(张建军), Liu J(刘洁). Genetic analysis of seedling growth rate of cucumber under low temperature and weak light conditions. Sci Agric Sin (中国农业科学), 2010, 43(24): 5073–5078 (in Chinese with English abstract)



[29]Lu F(卢峰), Zou J-Q(邹剑秋), Duan Y-H(段有厚), Lü X-L(吕香玲), Guo Y-H(郭玉华). Genetic analysis of stalk sugar content using mixed major gene plus poly-genes model in sweet sorghum. Chin Agric Sci Bull (中国农学通报), 2011, 27(9): 166–170 (in Chinese with English abstract)



[30]Huang B-Y(黄冰艳), Zhang X-Y(张新友), Miao L-J(苗利娟), Liu H(刘华), Qin L(秦利), Xu J(徐静), Zhang Z-X(张忠信), Tang F-S(汤丰收), Dong W-Z(董文召), Han S-Y(韩锁义), Liu Z-Y(刘志勇). Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea L. Sci Agric Sin (中国农业科学), 2012, 45(4): 617–624(in Chinese with English abstract)



[31]Zhang X, Li C Q, Wang X Y, Chen G P, Zhang J B, Zhou R Y. Genetic analysis of Cryotolerance in cotton during the overwintering period using mixed model of major gene and polygene. J Integr Agric, 2012, 11: 537–544



[32]Widstrom N W, Bagby M O, Palmer D M, Black L T, Carr M E. Relative stalk sugar yields among maize populations, cultivars, and hybrids. Crop Sci, 1984, 24: 913–915



[33]Natoli A, Gorni C, Chegdani F, Ajmone marsan P, Colombi C, Lorenzoni C, Marocco A. Identification of QTLs associated with sweet sorghum quality. Maydica, 2002, 47: 311–322



[34]Bian Y L, Yazaki S J, Inoue M K, Cai H W. QTLs for sugar contentof stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China, 2006, 5: 736–744



[35]Ritter K B, Jordan D R, Chapman S C, Godwin I D, Mace E S, Lynne McIntyre C. Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed, 2008, 22: 367–384



[36]Murray S C, Sharma A, Rooney W L, Klein P E,  Mullet J E, Mitchell S E, Kresovich S. Genetic improvement of sorghum as a biofuel feedstock I: quantitative loci for stem sugar and grain nonstructural carbohydrates. Crop Sci, 2008, 48: 2165–2179



[37]Murray S C, Rooney W L, Hamblin M T, Mitchell S E, Kresovich S. Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome, 2009, 2: 48–62



[38]Shiringani A L, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010, 121: 323–336



[39]Guan Y A, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in sorghum. Euphytica, 2011, 182: 431–440

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!