欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 269-279.doi: 10.3724/SP.J.1006.2013.00269

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高温胁迫下甜玉米雌穗发育基因差异表达谱分析

李余良,刘建华,郑锦荣,胡建广*   

  1. 广东省农业科学院作物研究所, 广东广州 510640
  • 收稿日期:2012-05-04 修回日期:2012-08-05 出版日期:2013-02-12 网络出版日期:2012-10-08
  • 基金资助:

    本研究由广东省自然科学基金项目(10151064001000016), 广东省科技计划项目(2010B050300012, 2009A020102003)和广州市民生科技重大专项(12B124070011)资助。

Gene Expression Profile of Sweet Corn Ears under Heat Stress

LI Yu-Liang, LIU Jian-Hua,ZHENG Jin-Rong,HU Jian-Guang*   

  1. Institute of Crop Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
  • Received:2012-05-04 Revised:2012-08-05 Published:2013-02-12 Published online:2012-10-08

摘要:

利用数字化基因表达谱技术, 对高温胁迫下优良甜玉米杂交种粤甜13雌穗发育相关基因的表达谱进行分。结果表明, 在高温胁迫和适温下差异表达基因达949, 其中有上调表达基因705, 下调表达基因244, 上调表达10倍以上的基因108, 下调表达10倍以上的基因40个。对差异表达基因功能注释分析表明, 它们主要集中在细胞内组分和膜上, 主要具催化活性、结合活性、水解酶活性、氧化还原酶活性等, 参与代谢、细胞结构与功能、胁迫应答、物质运输和生物调节等生物学过程, 推测对雌穗发育过程中籽粒和果穗的形成具有重要作用。这些基因中有一半以上的基因功能未知, 下一步将对其开展克隆和功能方面的分析。

关键词: 甜玉米, 高温胁迫, 数字化基因表达谱, 基因表达, 实时定量RT-PCR

Abstract:

Sweet corn is an important vegetable crop around the world. Heat stress is one of the limiting factors in the production of maize in southern China. Therefore, digitalgene expression profile was used to investigate the global gene expression profiles in ear development of maize cultivar Yuetian 13 widely planted in Guangdong under heat stress. The resultsin the distribution of total Clean Tags, high-expression tags with copy numbers larger than 100 were in absolute dominance whereas low-expression tags with copy numbers smaller than five occupy the majority of distinct tag distributions. In total, 949 differentially expressed genes were detected, including 705 and 244 of genes up- and down-regulated, respectively. Among them, 108 and 40 genes were up- and down-regulated at least 10-fold. Using maize Gene Ontology database, we categorized these genes into three main categories: cellular component, molecular function and biological process. A large proportion of differentially expressed genes distributed in cell, intracellular and membrane, related to catalytic, binding, hydrolase and oxidoreductase activities, and involved in metabolic, cellular structure and function,response to stimulusbiological regulation, were valuable for investigating kernel and ear development. Under heat stress, the genes related to cell structure maintenance, photosynthesis, signal transduction, transcription factor, and response to stress had higher expression levels in ear. And six genes were randomly selected for confirming their expression patterns by quantitative RT-PCR. The result showed these expression patterns basically consistent with the digital gene expression data. Further research should concentrate on characterizing the unknown function ones among differentially expressed genes., transport and indicated that,

Key words: Sweet corn, Heat stress, Digital Gene expression profile, Differentially expressed genes, Real-time quantitative RT-PCR

[1]Hallauer A R. Specialty Corns, 2nd edn. Boca Raton, Florida: CRC Press, 2001. pp 162–179



[2]Nordine C, Robert J J. Disruption of maize kernel growth and development by heat stress. Plant Physiol, 1994, 106: 45–51



[3]Wang M-L(王曼玲), Rocha P, Li L-Y(李落叶), Xu M-L(徐孟亮), Din C, Xia X-J(夏新界). Analysis of differential expression of rice genes in response to heat stress by microarray. Biotechnol Bull (生物技术通报), 2009, (10): 92–97 (in Chinese with English abstract)



[4]Muthappa S K, Ganesh K, Venkatachalayya S, Makarla U. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J Plant Physiol, 2007, 164: 111–125



[5]Dong Y S, Fatma K, Kil J L, Charles L. Acquired tolerance to temperature extremes. Plant Sci, 2003, 8: 179–187



[6]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967–971



[7]Wang X J, Cao H H, Zhang D F, Li B, He Y, Li J S, Wang S C. Relationship between differential gene expression and heterosis during ear development in maize (Zea mays L.). J Genet Genomics, 2007, 34(2): 160–170



[8]Li B(李波), Zhang D-F(张登峰), Jia G-Q(贾冠清), Zhang T-F(张体付), Dai J-R(戴景瑞), Wang S-C(王守才). Gene expression profile and main function genes during ear development in a highly heterotic hybrid of maize. Acta Agron Sin (作物学报), 2009, 35(5): 768–777 (in Chinese with English abstract)



[9]Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbreds. Proc Natl Acad Sci USA, 2006, 103: 6805–6810



[10]Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol, 2007, 63: 381–391



[11]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995



[12]Ansorge W J. Next-generation DNA sequencing techniques. N Biotechnol, 2009, 25: 195–203



[13]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001, 29: 1165–1188



[14]Bennett S. Solexa Ltd. Pharmacogenomics, 2004, 5: 433–438



[15]Freedman R B, Hirst T R, Tuite M F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci, 1994, 19: 331–336



[16]He L(何亮), Li F-H(李富华), Sha L-N(沙莉娜), Fu F-L(付凤玲), Li W-C(李晚忱). Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agron Sin (作物学报), 2008, 34(5): 899−903 (in Chinese with English abstract)



[17]White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487–511



[18]Bilyeu K D, Cole J L, Laskey J G, Riekhof W R, Esparza T J, Kramer M D, Morris R O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol, 2001, 125: 378–386



[19]Baudino S, Hansen S, Brettschneider R, Hecht V F, Dresselhaus T, Lorz H, Dumas C, Rogowsky P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10



[20]Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 1999, 41: 577–585



[21]Blein J P, Coutos-Thevenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defence mechanisms. Trends Plant Sci, 2002, 7: 293–296



[22]Han B-D(韩宝达), Li L-X(李立新). Seed storage proteins and their intracellular transport and processing. Chin Bull Bot (植物学报), 2010, 45(4): 492–505 (in Chinese with English abstract)



[23]Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol, 2001, 125: 1206–1215



[24]Huang Y F, Jordan W R, Wing R A, Morgan P W. Gene expression induced by physical impedance in maize roots. Plant Mol Biol, 1998, 37: 921–930



[25]Liu Y-S (刘彦随), Liu Y(刘玉), Guo L-Y(郭丽英). Impact of climatic change on agricultural production and response strategies in China. Chin J Eco-Agric (中国生态农业学报), 2010, 18(4): 905–910 (in Chinese with English abstract)



[26]Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol, 2002, 48: 75–97



[27]Zhang Y, Mian M A R, Chekhovskiy K, So S, Kupfer D, Lai H S, Roe B A. Differential gene expression in Festuca under heat stress conditions. J Exp Bot, 2005, 56: 897–907



[28]Duggan D J, Bittner M, Chen Y, Meltzer P, Trent J M. Expression profiling using cDNA microarrays. Nat Genet, 1999, 21: 10–14



[29]Eveland A L, Satoh-Nagasawa N, Goldshmidt A, Jackson D. Digital gene expression signatures for maize development. Plant Physiol, 2010, 154: 1024–1039



[30]Hao Q N, Zhou X A, Sha A H, Wang C, Zhou R, Chen S L. Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics, 2011, 12: 525



[31]Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24: 133–141



[32]Ekman D R, Lorenz W W, Przybyla A E, Wolfe N L, Dean J F. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol, 2003, 133: 1397–1406

[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
[6] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[7] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[8] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[9] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[10] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[11] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[12] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176.
[13] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[14] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[15] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!