欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1030-1038.doi: 10.3724/SP.J.1006.2013.01030

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

豌豆抗白粉病资源筛选及分子鉴定

王仲怡1,包世英2,段灿星1,宗绪晓1,朱振东1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081;2云南省农业科学院粮食作物研究所,云南昆明 650205
  • 收稿日期:2012-11-19 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 通讯作者: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-09)和农业部作物种质资源保护子项目(NB2010-2130135-25-14)资助。

Screening and Molecular Identification of Resistance to Powdery Mildew in Pea Germplasm

WANG Zhong-Yi1,BAO Shi-Ying2,DUAN Can-Xing1,ZONG Xu-Xiao1,ZHU Zhen-Dong1,*   

  1. 1 Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Grain Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
  • Received:2012-11-19 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22
  • Contact: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609

摘要:

由豌豆白粉菌引起的白粉病是豌豆生产上的重要病害,利用抗病品种是防治该病害最经济有效的方法。本研究在控制条件下苗期接种鉴定了396份豌豆资源对2个不同地理来源的豌豆白粉病菌分离物EPBJEPYN的抗性,用4个与豌豆抗白粉病基因er1连锁的SCAR标记对66份免疫或抗病资源进行标记基因型鉴定。结果表明,在鉴定的396份资源中,有101份资源表现免疫或抗病,其中对分离物EPBJEPYN免疫的资源分别为59(14.9%)60(15.2%),对2个分离物均免疫的资源有54(13.6%);在鉴定的82份中国资源中,有8份对2个分离物均表现免疫。分子标记将66份免疫或抗病资源鉴定为13个标记基因型,同一地理来源的抗性资源分属不同的标记基因型,其中8份来自中国云南的抗性资源分属7个标记基因型。研究表明,中国存在有效的豌豆白粉病抗源,抗性资源具有丰富的遗传多样性。

关键词: 豌豆, 白粉病, 抗病基因, 分子鉴定

Abstract:

Pea powdery mildew, caused by Erysiphe pisi, is one of the most important diseases in pea production. The utilization of resistant pea cultivars is the most economical and effective method for controlling the disease. In this study, Three hundred and ninety-six pea accessions were evaluated for resistance to two powdery mildew isolates from different geographical origins in seedling stage under controlling condition, and four SCAR makers closely linked to pea powdery mildew resistance gene er1 were used to genotype accessions with immunity or resistance. The results showed that 101 accessions were immune or resistant to powdery mildew, 59 (14.9%) and 60 (15.2%) accessions were immune to the Beijing isolate and Yunnan isolate, respectively, 54 (13.6%) accessions were immune to both the Beijing isolate and Yunnan isolate. In eighty-two accessions from China, only eight were immune to both of the two isolates. Thirteen marker genotypes were identified in 66 selected accessions with immunity or resistance through molecular genotyping, and the accessions from the same geographical origin contained different marker genotypes. Eight accessions from Yunnan Province of China shared seven marker genotypes. The above results indicated that pea germplasm with resistance to pea powdery mildew has effective and extensive genetic diversity in China.

Key words: Pisum sativum, Powdery Mildew, Resistance gene, Molecular identification

[1]Zong X-X(宗绪晓), Guan J-P(关建平), Wang H-H(王海飞), Ma Y(马钰). Population structure and genetic diversity of global pea (Pisum sativum L.) germplasm resources. Sci Agric Sin (中国农业科学), 2010, 43: 240–251 (in Chinese with English abstract)



[2]Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74–115



[3]Nisar M, Ghafoor A. Linkage of a RAPD marker with powdery mildew resistance er1 gene in Pisum sativum L. Russ J Genet, 2011, 47: 300–304



[4]Fondevilla S, Rubiales D. Powdery mildew control in pea: a review. Agron Sustainable Dev, 2012, 32: 401–409



[5]Ond?ej M, Dostálová R, Hýbl M, Odstr?ilová L, Tyller R, Trojan R. Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ, 2003, 49: 481–485



[6]Harland S C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948, 2: 263–269



[7]Heringa R J, van Norel A, Tazelaar M F. Resistance to powdery mildew (Erisyphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica, 1969, 18: 163–169



[8]Fondevilla S, Torres A M, Moreno M T, Rubiales D. Identi?cation of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci, 2007, 57: 181–184



[9]Timmerman G M, Frew T J, Weeden N F, Miller A L, Goulden D S. Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C). Theor Appl Genet, 1994, 88: 1050–1055



[10]Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed, 2010, 25: 229–237



[11]Wang X-M(王晓鸣), Zhu Z-D(朱振东), Duan C-X(段灿星), Zong X-X(宗绪晓). Identification and control technology of diseases and pests on broad bean and Pea (蚕豆豌豆病虫害鉴别与控制技术). Beijing: China Agricultural Scientech Press, 2007. pp 54–100 (in Chinese)



[12]Peng H-X(彭化贤), Yao G(姚革), Jia R-L(贾瑞林), Liang H-Y(梁红云). Studies on resistance to powdery mildew in pea. J Southwest Agric Univ (西南农业大学学报), 1991, 13(4): 384–386 (in Chinese with English abstract)



[13]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[14]Rana J C, Banyal D K, Sharma K D, Sharma M K, Gupta S K, Yadav S K. Screening of pea germplasm for resistance to powdery mildew. Euphytica, 2013, 189: 271–282



[15]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018



[16]Tiwari K R., Penner G A, Warkentin T D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998, 41: 440–444



[17]Srivastava R K, Mishra S K, Singh A K, Mohapatra T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea (Pisum sativum L.). Euphytica, 2012, 186: 855–866



[18]Liu A-Y(刘爱媛). Identification method of resistance of pea powdery mildew using detached leaves. Acta Phytophyl Sin (植物保护学报), 2002, 29(2): 119–123 (in Chinese with English abstract)



[19]Xue A G, Warkentin T D. Reactions of field pea varieties to three isolates of Uromyces fabae. Can J Plant Sci, 2002, 82: 253–255



[20]Tiwari K R, Penner G A, Warkentin T D. Inheritance of powdery mildew resistance in pea. Can J Plant Sci, 1997, 77: 307–310



[21]Tiwari K R, Penner G A, Warkentin T D, Rashid K Y. Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Can J Plant Pathol, 1997, 19: 267–271



[22]Banyal D K, Tyagi P D. Resistance of pea genotypes in relation to sporulation by Erysiphe pisi. Crop Prot, 1997, 16: 51–55



[23]Ghafoor A, McPhee K. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012, 186: 593–607



[24]Liu S M, O’Brien L, Moore S G. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Austr J Exp Agric, 2003, 43: 373–378



[25]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[26]Sharma B. The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 22–27



[27]Sharma B. Present status of the powdery mildew resistance gene Er in pea (Pisum sativum). Proceedings of the 4th International Iran and Russia Conference “Agriculture and Natural Resources”, September 8-10, 2004, Shahrekord University, Iran, pp 376–381



[28]Sharma B. Identification of recessive er gene for powdery mildew resistance in a landrace of Pisum sativum. Pisum Genet, 2003, 35: 30–31



[29]Sharma B, Yadav Y. Pisum fulvum carries a recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 31



[30]Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broadspectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866–878



[31]Pavan S, Schiavulli A, Appiano M, Marcotrigiano A R, Cillo F, Visser R G F, Bai Y, Lotti C, Ricciardi L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet, 2011, 123: 1425–1431



[32]Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa M T, Farinhó M, Leitão J M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica, 2010, 171: 327–335



[33]Pereira G, Leitão J. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica, 2010, 171: 345–354



[34]Fondevilla S, Carver T L W, Moreno M T, Rubiales D. Macroscopic and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol, 2006, 115: 309–321



[35]Ambrose M J. Screening for field resistance to powdery mildew (Eyrsiphe polygoni D.C.) in the JI Pisum collection. Pisum Genet, 2009, 41: 40–43



[36]Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R, de Vienne D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet, 1994, 88: 17–27



[37]Janila P, Sharma B. RAPD and SCAR markers for powdery mildew resistance gene er1 in pea. Plant Breed, 2004, 12: 271–274



[38]Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005, 142: 86–91



[39]Tonguc M, Weeden N F. Identification and mapping of molecular markers linked to er1 gene in pea. Plant Mol Biol Biotechnol, 2010, 1: 1–5



[40]Zong X-X(宗绪晓), Guan J-P(关建平), Wang S-M(王述民), Liu Q-C(刘庆昌). Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin (作物学报), 2008, 34(8): 1330−1338 (in Chinese with English abstract)
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[3] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[4] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[5] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[6] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建[J]. 作物学报, 2020, 46(7): 1006-1015.
[7] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[8] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[9] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[10] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[11] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[12] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[13] 吴秋红,陈永兴,李丹,王振忠,张艳,袁成国,王西成,赵虹,曹廷杰,刘志勇. 利用SNP芯片和BSA分析规模化定位小麦抗白粉病基因[J]. 作物学报, 2018, 44(01): 1-14.
[14] 王小婷,黄锁,徐兆师,李连城,马有志,陈明,闵东红. 豌豆终止子rbc-T在转基因小麦研究中的应用[J]. 作物学报, 2017, 43(08): 1254-1258.
[15] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!