欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1069-1077.doi: 10.3724/SP.J.1006.2013.01069

• 耕作栽培·生理生化 • 上一篇    下一篇

高产夏玉米产量性能特征及密度深松调控效应

侯海鹏,丁在松,马玮,李从锋*,赵明*   

  1. 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室, 北京100081
  • 收稿日期:2012-11-19 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 通讯作者: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752; 李从锋, E-mail: licongfeng2008@sina.com, Tel: 010-82106043
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B14), 国家重点基础研究发展计划(973计划)项目(2009CB118605)和中央级公益性科研院所基本科研业务费专项资助。

Yield Performance Characteristics and Regulation Effects of Plant Density and Sub-Soiling Tillage System for High Yield Population of Summer Maize

HOU Hai-Peng,DING Zai-Song,MA Wei,LI Cong-Feng*,ZHAO Ming*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081, China
  • Received:2012-11-19 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22
  • Contact: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752; 李从锋, E-mail: licongfeng2008@sina.com, Tel: 010-82106043

摘要:

以现代高产玉米品种中单909和郑单958为试验材料, 于2010—2011年在河南新乡设置种植密度与耕作方式田间试验, 研究夏玉米高产群体产量性能参数变化及主要栽培措施调控效应。结果表明, 中单909相比郑单958显著增产11.36%, 穗粒数(KN)、千粒重(KW)极显著增加(P<0.01), 生育天数(D)、收获指数(HI)和收获穗数(EN)无明显差异(P>0.05); 平均叶面积指数(MLAI)、光合势在灌浆后期增加更为显著, 平均净同化率(MNAR)显著增加(P<0.05), 而干物质积累最大生长速率、生长速率最大时的生长量、平均生长速率、活跃生长期均明显提高。进一步分析产量性能参数间相互关系, EN与MLAI呈极显著正相关(P<0.01), KN和KW与MNAR呈极显著正相关(P<0.01), 而MNAR、KN、KW与MLAI呈极显著负相关(P<0.01)。中单909比郑单958增产可能是产量性能参数差异补偿的结果。中单909在高密度下具有较高的MLAI、MNAR和KN, 获得最高产量的群体密度比郑单958高27.3%; 深松耕作方式下, 中单909和郑单958分别增产13.0%和8.7%, 主要表现为, MNAR和KN显著增加, MLAI和D无明显变化, HI、EN、KW增加幅度在不同品种间表现不一致, 表明土壤深松条件下密植(9.50×104株 hm-2)是目前夏玉米高产重要技术途径之一。综上, 密植夏玉米高产群体产量性能特征参数为MLAI 3.05~3.55、MNAR 4.80~6.27 g m-2 d-1、D 109~111、HI 0.50~0.52、EN 9.60~10.38×104穗 hm-2、KN 352.0~370.1粒、KW 314.7~315.9 g, 可以实现11 250~12 000 kg hm-2以上的产量。

关键词: 夏玉米, 高产, 产量性能, 条深松, 调控效应

Abstract:

A 2-year field trial using high yield varieties Zhengdan 958 and Zhongdan 909 with densities and tillage systems was conducted in Xinxiang, Henan Province during 2010–2011 growing season to study the characteristics of yield performance parameters and the effect of main cultivation practices for high yield population Results indicated that compared with Zhendan 958, Zhongdan 909 increased grain yield by 11.36% significantly, as well as kernel number per ear (KN) and 1000-kernel weight (KW) (P<0.01). There was no difference (P>0.05) in duration (D), harvest index (HI), and ear number (EN) between two hybrids. Mean leaf area index (MLAI) and leaf area duration were improved significantly (P<0.01), mean net assimilation rate (MNAR) was increased significantly (P<0.05). Moreover, Zhongdan 909 retained higher maximum growth rate,biomass at the maximum growth rate,average growth rate and active growth duration compared with Zhengdan958. There were significantly positive correlations between EN and MLAI (P<0.01), and between KN, KW, and MNAR (P<0.01). There were significantly negative correlations between MNAR, KN, KW, and MLAI (P<0.01). Zhongdan 909 had a higher yield because of the mechanism of asynchronous improvement of yield performance parameters. The optimize population of Zhongdan 909 was 27.3% higher than that of Zhengdan 958, with the higher MLAI, MNAR and KN. Grain yield increased by 8.71% and 13.02% in sub-soiling tillage system for Zhengdan 958 and Zhongdan 909, respectively, resulting from increasing MNAR and KN significantly. There was no difference in MLAI and D between both varieties. HI, EN and KW were increased differently in different varieties. Thus, yield performance parameters for high yield of 11 250–12 000 kg ha-1 were MALI 3.05–3.55, MNAR 4.80–6.27 g m-2 d-1, growth days 109–111, harvest index 0.50–0.52, harvest ears 9.60–10.38×104 ha-1, kernel number per ear 352.0–370.1, 1000-kernel weight 314.7–315.9 g. Increasing population density (about 9.50×104 plants ha-1) with sub-soiling tillage system is one of main management practices for high yield in Yellow Huai Valley areas.

Key words: Summer maize, High yield, Yield performance characteristics, Sub-soiling tillage system, Regulation effects

[1]Zhao M(赵明), Li J-G(李建国), Zhang B(张宾), Dong Z-Q(董志强), Wang M-Y(王美云). The compensatory mechanism in exploring crop production potential. Acta Agron Sin (作物学报), 2006, 32(10): 1566–1573 (in Chinese with English abstract)



[2]Chen C-Y(陈传永), Dong Z-Q(董志强), Zhao M(赵明), Zhang B(张宾), Zhu P(朱平). Researches of analysis and growth on spring maize with super-high yield in cold region. J Maize Sci (玉米科学), 2007, 15(3): 75–79 (in Chinese with English abstract)



[3]Lü A-Z(吕爱枝), Ding C-F(丁成方), Wang X-B(王晓波), Wang M-Y(王美云), Zhao M(赵明). Yield characteristics of spring maize with super-high yield in the irrigatable semiarid area of Hebei. Agric Res Arid Areas (干旱地区农业研究), 2011 29(1):168–171 (in Chinese with English abstract)



[4]Yang J-S(杨今胜), Wang Y-J(王永军), Zhang J-W(张吉旺), Liu P(刘鹏), Li C-F(李从锋), Zhu Y-G(朱元刚), Hao M-B(郝梦波), Liu J-G(柳京国), Li D-H(李登海), Dong S-T(董树亭). Dry matter production and photosynthesis characteristics of three hybrids of maize (Zea mays L.) with super-high-yielding potential. Acta Agron Sin (作物学报), 2011, 37(2): 355–361 (in Chinese with English abstract)



[5]Fu X-L(付雪丽), Zhang H(张惠), Jia J-Z(贾继增), Du L-F(杜立丰), Fu J-D(付金东), Zhao M(赵明). Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin (作物学报), 2009, 35(9): 1708–1714 (in Chinese with English abstract)



[6]Chen C-Y(陈传永), Hou Y-H(侯玉虹), Sun R(孙锐), Zhu P(朱平), Dong Z-Q(董志强), Zhao M(赵明). Effects of planting density on yield performance and density-tolerance analysis for maize hybrids Acta Agron Sin (作物学报), 2010, 36(7): 1153–1160 (in Chinese with English abstract)



[7]Li L-J(李立娟), Wang M-Y(王美云), Xue Q-L(薛庆林), Cui Y-H(崔彦宏), Hou H-P(侯海鹏), Ge J-Z(葛均筑), Zhao M(赵明). Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai river valleys region. Acta Agron Sin (作物学报), 2011, 37(7): 1229–1234 (in Chinese with English abstract)



[8]Wang Z-G(王志刚), Gao J-L(高聚林), Zhang B-L(张宝林), Luo R-L(罗瑞林), Yang H-S(杨恒山), Sun J-Y(孙继颖), Yu X-F(于晓芳), Su Z-J(苏治军), Hu S-P(胡树平).Productivity performance of high-yield spring maize and approaches to increase grain yield (above 15 t ha-1) in irrigated plain of Inner Mongolia. Acta Agron Sin (作物学报), 2012, 38(7): 1318–1327 (in Chinese with English abstract)



[9]Li X-L(李向岭), Li C-F(李从锋), Ge J-Z(葛均筑), Hou H-P(侯海鹏), Zhao M(赵明). Effects of planting date and planting density on yield performance of maize. J Maize Sci (玉米科学), 2011, 19(2): 95–100 (in Chinese with English abstract)



[10]Li X-L(李向岭), Li C-F(李从锋), Hou Y-H(侯玉虹), Hou H-P(侯海鹏), Ge J-Z(葛均筑), Zhao M(赵明). The summer maize yield performance in different planting dates and its effect of ecological factors. Sci Agric Sin (中国农业科学), 2012 45(6): 1074–1083 (in Chinese with English abstract)



[11]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33(4): 612–619 (in Chinese with English abstract)



[12]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193 (in Chinese with English abstract)



[13]Sun R(孙锐). The Effect of Density on Spring Maize Yield Performance and Quantitative Analysis. PhD Dissertation of China Agricultural University, 2009 (in Chinese with English abstract)



[14]Maddonni G, Chelle M, Drouet J L, Andrieu B. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crop Res, 2001, 70: 1–13



[15]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东), Ren J-H(任建宏). Study on maize population photosynthetic characteristic of different type. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(3): 536–540 (in Chinese with English abstract)



[16]Berenguer M J, Faci J M. Sorhhum (Sorghum bicolor L. Moench) yield compensation processes under different plant densities and variable water supply. Eur J Agron, 2001, 15: 43–55



[17]Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 88: 103–114



[18]Sarlangue T, Andrade F H., Calviño P A, Purcell L C. Why do maize hybrids respond differently to variations in plant density? Agron J, 2007, 99: 984–991



[19]Tokatlidis I S, Has V, Melidisc V, Has I, Mylonas I, Evgenidis G, Copandean A, Ninou E, Fasoula V A. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rain-fed and irrigated conditions. Field Crops Res, 2011, 120: 345–351



[20]Pikul J L, Kristian J S. Water infiltration and storage affected by sub-soiling and subsequent tillage. Soil Sci Soc Am J, 2003, 3: 859–866



[21]He J(何进), Li H-W(李洪文), Gao H-W(高焕文). Sub-soiling effect and economic benefit under conservation tillage mode in Northern China. Trans CSAE (农业工程学报), 2006, 22(10): 62–67 (in Chinese with English abstract)



[22]Gong X-J(宫秀杰), Qian C-R(钱春荣), Yu Y(于洋), Zhao Y(赵杨), Jiang Y-B(姜宇博), Wang J-H(王俊河), Ma J-T(马军韬). Effects of sub-soiling and no-tillage on soil physical characters and corn yield. J Maize Sci (玉米科学), 2009, 17(5): 134–137 (in Chinese with English abstract)



[23]Osunbitan J A, Oyedele D J, Adekalu K O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res, 2005, 82: 57–64



[24]Alvarez R, Steinbach H S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil & Tillage Res, 2009, 104: 1–15



[25]Vetch J A, Randall G W, Lamb J A. Corn and soybean production as affected by tillage systems. Agron J, 2007, 99: 952–959



[26]Cox W J, Cherney J H, Hanchar J H. Zone tillage depth affects yield and economics of corn silage production. Agron J, 2009, 101:1093–1098

[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565.
[5] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[6] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[7] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[8] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[9] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[10] 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588.
[11] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[12] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[13] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[14] 王洪章,刘鹏,贾绪存,李静,任昊,董树亭,张吉旺,赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析[J]. 作物学报, 2019, 45(10): 1544-1553.
[15] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!