欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1060-1068.doi: 10.3724/SP.J.1006.2013.01060

• 耕作栽培·生理生化 • 上一篇    下一篇

高温胁迫对水稻光合PSII系统伤害及其与叶绿体D1蛋白间关系

杨卫丽1,黄福灯2,曹珍珍1,雷炳婷1,胡东维1,程方民1,*   

  1. 1 浙江大学农业与生物技术学院,浙江杭州310058;2 浙江省农业科学院作物与核技术利用研究所,浙江杭州310031
  • 收稿日期:2012-12-04 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 通讯作者: 程方民, E-mail: chengfm@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271655, 31071366), 浙江省重大科技专项(2010C12003)和浙江省自然科学基金项目(LY12C13005)资助。

Effects of High Temperature Stress on PSII Function and Its Relation to D1 Protein in Chloroplast Thylakoid in Rice Flag Leaves

YANG Wei-Li1,HUANG Fu-Deng2,CAO Zhen-Zhen1,LEI Bing-Ting1,HU Dong-Wei1,CHENG Fang-Min1,*   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Institute of Crop and Nucleus Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310031, China
  • Received:2012-12-04 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22
  • Contact: 程方民, E-mail: chengfm@zju.edu.cn

摘要:

以水稻结实期的人工控温试验测定不同温度处理下水稻旗叶光合速率、叶绿素荧光参数的动态变化,并结合Western印迹与胶体金标记技术对叶肉细胞类囊体膜中D1蛋白的表达检测与活性定位,探讨了高温胁迫对D1蛋白存在形态与活性分布的影响,以及D1蛋白表达与叶片光合速率、PSII荧光参数的联系。结果表明,高温处理下叶片净光合速率下降、PSII潜在活性(Fv/Fo)PSII光能转化效率(Fv/Fm)降低,着高温胁迫时间的持续和叶片功能的衰退,类囊体膜结构损伤越严重,光能转化效率越低;在D1蛋白的两类存在形态中,非磷酸化D1蛋白和磷酸化D1蛋白在高温胁迫下的表达量均有所下降,但前者下降更明显;高温处理下控制D1蛋白表达的叶绿体psbA基因在转录水平呈下调表达,使D1蛋白合成及周转过程受到抑制,进而类囊体膜PSII反应中心的功能受损与叶绿体光合效率下降,揭示高温胁迫对叶片PSII系统的伤害受D1蛋白磷酸化过程和psbA基因表达变化的共同作用,进而影响不同水稻品种在高温胁迫下的光合速率和耐热性。

关键词: 水稻, 高温胁迫, PSII光合系统, D1蛋白, 蛋白印迹, 免疫定位

Abstract:

On the basis of the artificial controlled temperature treatments in growth chambers, influences of high temperature stress at rice filling stage on the expression and distribution of D1 protein in leaf chloroplast thylakoid, as well as their relations to the decline of leaf photosynthetic rate and the damage of PSII membrane system were investigated by detecting the temporal pattern of leaf photosynthetic rate and chlorophyll fluorescence parameters, with SDS-PAGE electrophoresis, western-blotting and immunogold labeling methods. The results showed that rice flag leaves exposed high temperature generally had lower net photosynthetic rate (Pn), PSII potential efficiency(Fv/Fo) and solar energy transmitting efficiency(Fv/Fm) compared with those under normal temperature, with more severe damage and remarkable function dropping in chloroplast thylakoid due to prolonging stress times and accelerating leaves senescence.The amount of D1 protein in rice leaves under high temperature stress decreased significantly. In the two types of D1 protein, the amount of non-phosphorylated D1 protein was more sensitive to high temperature stress than the phosphorylated D1 protein.The RNA transcription of psbA gene in chloroplast, controlling D1 protein synthesis, was down-regulated by high temperature stress, inhabiting mRNA transcription and protein translation in D1 protein synthesis, thereby causing the functional damage of PSII reaction centre in thylakoid and dropping leaf photosynthetic rate under high temperature stress. It could be suggested that the functional damage of PSII reaction centre under high temperature stress be caused by the combined action of D1 protein hosphorylation and psbA gene expression, resulting in the decrease of photosynthetic rate and high temperature tolerance in two rice genotypes.

Key words: Rice (Oryza sativa L.), High temperature stress, Photosynthetic system PSII, D1 protein, Western-blotting, Immunogold

[1]Andrew J, Challinor F E, Steve A, Elisabeth S, Evan F. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot, 2009, 60: 2775–2789



[2]Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975



[3]Duan H(段骅), Yang J-C(杨建昌). Research advances in the effect of high temperature on rice and its mechanism. Chin J Rice Sci (中国水稻科学), 2012, 26(4): 393–400 (in Chinese with English abstract)



[4]Tsutomu I, Akemi K H, Masashi I. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J Cereal Sci, 2009, 50: 166–174



[5]Tao L-X(陶龙兴), Wang X(王熹), Liao X-Y(廖西元), Shen B(沈波), Tan H-J(谭慧娟), Huang S-W(黄世文). Effects of air temperature and sink-source strength on rice quality and some physiological traits. Chin J Appl Ecol (应用生态学报), 2006, 17(4): 647–652 (in Chinese with English abstract)



[6]Betty J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491–543



[7]Barnabas B, Gager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ, 2008, 31: 11–38



[8]Pastenes C, Horton P. Effect of high temperature on photosynthesis in beans (Oxygen Evolution and Chlorophyll Fluorescence). Plant Physiol, 1996, 112: 1245–1251



[9]Franklin K A. Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol, 2009, 12: 63–68



[10]Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol, 2002, 128: 1087–1097



[11]He J X, Wang J, Liang H G. Effects of water on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant, 1995, 93: 771–777



[12]Teng Z-H(滕中华), Zhi L(智丽), Zong X-F(宗学凤), Wang S-G(王三根), He G-H(何光华). Effects of high temperature on chlorophyll fluorescence, oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agron Sin (作物学报), 2008, 34(9): 1662–1666 (in Chinese with English abstract)



[13]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang S-T(张顺堂), Xiao Y-H(肖应辉), He Z-Z(贺治洲), Lei D-Y(雷东阳). Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice. Acta Agron Sin (作物学报), 2006, 32(9): 1306–1310 (in Chinese with English abstract)



[14]Tang R-S (汤日圣), Zheng J-C (郑建初), Chen L-G (陈留根), Zhang D-D(张大栋), Jin Z-Q(金之庆), Tong H-Y(童红玉). Effects of high temperature on grain filling and some physiological characteristic in flag leaves of hybrid rice. Acta Photophysiol Sin (植物生理与分子生物学学报), 2005, 31(6): 657–662 (in Chinese with English abstract)



[15]Bredenkarap G J, Baker N R. Temperature-sensitivity of D1 protein metabolism in isolated Zea mays chloroplasts. Plant Cell Environ, 1994, 17: 205–210



[16]Callahan F E, Ghirardi M L, Sopory S K. A novel metabolic from of the 32 kDa protein in the grana-localized reaction center of photosystem II. J Biol Chem, 1990, 265: 15357–15360



[17]Hwang H J, Kim E M, Rhew T H, Lee C H. Reversible photoinactivation of photosystem II during desiccation of barley leaves in the light. J Plant Biol, 2004, 47: 142–148



[18]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Change of starch synthase in early indica rice grain and its response to air temperature at the filling stage. Sci Agric Sin (中国农业科学), 2003, 27(2): 201–208 (in Chinese with English abstract)



[19]Laemmli U K. Cleavage of structural protein during the assembly of the head of the bacteriophage T4. Nature, 1970, 117: 680–685



[20]Yamashita A, Nijo N, Pospisil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y. Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem, 2008, 283: 28380–28391



[21]Zhang Q-F(张其芳), Liu Y(刘奕), Huang F-D(黄福灯), Hu D-W(胡东维), Cheng F-M(程方民). Ultra-structural changes of the vascular bundles and CaM Immuno-gold localization at phloem cells among different positional rachillae within a rice panicle. Acta Agron Sin (作物学报), 2009, 35(12): 2280–2287 (in Chinese with English abstract)



[22]Iida S, Kobiyama A, Ogata T, Murakami A. Differential DNA Rearrangements of plastid genes, psbA and psbD, in two species of the dinofl agellate Alexandrium. Plant Cell Physiol, 2010, 51: 1869–1877



[23]Silverstein T, Allen J E. Chloroplast thylakoid PS II Protein Phosphorylation protein phosphatase reactions are redox-independent and kinetieaIly heterogeneous. FEBS Lett, 1993, 332: 101–105



[24]Kornyeyev D, Logan B A, Tissue D T, Allen R D, Holaday A S. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Plant Cell Physiol, 2006, 47: 437–446



[25]Zhao B B, Wang J, Gong M H, Wen X G, Ren H Y, Lu C M. Effects of heat stress on PSII photochemistry in a cyanobacterium Spirulina platensis. Plant Sci, 2008, 175: 556–564



[26]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang S-T(张顺堂), Liu G-H(刘国华), Tang W-B(唐文邦), He Z-Z(贺治洲). Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Sci Agric Sin (中国农业科学), 2007, 40(7): 1345–1352 (in Chinese with English abstract)



[27]Wu H, Abasova L, Cheregi O, Deák Z, Gao K, Vass I. D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis. J Photochem Photobiol, 2011, 104: 320–325



[28]Rintamaki E, kettunen R, Aro E M. Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. J Biol Chem, 1996, 271: 14870–14875



[29]Pandey D M, Yeo U D. Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plant, 2008, 52: 291–298



[30]Anderson J M, Park Y I, Chow W S. Photoinhibition and photoprotection of photosystem II in nature. Plant Physiol, 1997, 100: 214–223

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!