作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1060-1068.doi: 10.3724/SP.J.1006.2013.01060
杨卫丽1,黄福灯2,曹珍珍1,雷炳婷1,胡东维1,程方民1,*
YANG Wei-Li1,HUANG Fu-Deng2,CAO Zhen-Zhen1,LEI Bing-Ting1,HU Dong-Wei1,CHENG Fang-Min1,*
摘要:
[1]Andrew J, Challinor F E, Steve A, Elisabeth S, Evan F. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot, 2009, 60: 2775–2789[2]Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975[3]Duan H(段骅), Yang J-C(杨建昌). Research advances in the effect of high temperature on rice and its mechanism. Chin J Rice Sci (中国水稻科学), 2012, 26(4): 393–400 (in Chinese with English abstract)[4]Tsutomu I, Akemi K H, Masashi I. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J Cereal Sci, 2009, 50: 166–174[5]Tao L-X(陶龙兴), Wang X(王熹), Liao X-Y(廖西元), Shen B(沈波), Tan H-J(谭慧娟), Huang S-W(黄世文). Effects of air temperature and sink-source strength on rice quality and some physiological traits. Chin J Appl Ecol (应用生态学报), 2006, 17(4): 647–652 (in Chinese with English abstract)[6]Betty J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491–543[7]Barnabas B, Gager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ, 2008, 31: 11–38[8]Pastenes C, Horton P. Effect of high temperature on photosynthesis in beans (Oxygen Evolution and Chlorophyll Fluorescence). Plant Physiol, 1996, 112: 1245–1251[9]Franklin K A. Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol, 2009, 12: 63–68[10]Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol, 2002, 128: 1087–1097[11]He J X, Wang J, Liang H G. Effects of water on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant, 1995, 93: 771–777[12]Teng Z-H(滕中华), Zhi L(智丽), Zong X-F(宗学凤), Wang S-G(王三根), He G-H(何光华). Effects of high temperature on chlorophyll fluorescence, oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agron Sin (作物学报), 2008, 34(9): 1662–1666 (in Chinese with English abstract)[13]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang S-T(张顺堂), Xiao Y-H(肖应辉), He Z-Z(贺治洲), Lei D-Y(雷东阳). Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice. Acta Agron Sin (作物学报), 2006, 32(9): 1306–1310 (in Chinese with English abstract) [14]Tang R-S (汤日圣), Zheng J-C (郑建初), Chen L-G (陈留根), Zhang D-D(张大栋), Jin Z-Q(金之庆), Tong H-Y(童红玉). Effects of high temperature on grain filling and some physiological characteristic in flag leaves of hybrid rice. Acta Photophysiol Sin (植物生理与分子生物学学报), 2005, 31(6): 657–662 (in Chinese with English abstract) [15]Bredenkarap G J, Baker N R. Temperature-sensitivity of D1 protein metabolism in isolated Zea mays chloroplasts. Plant Cell Environ, 1994, 17: 205–210[16]Callahan F E, Ghirardi M L, Sopory S K. A novel metabolic from of the 32 kDa protein in the grana-localized reaction center of photosystem II. J Biol Chem, 1990, 265: 15357–15360[17]Hwang H J, Kim E M, Rhew T H, Lee C H. Reversible photoinactivation of photosystem II during desiccation of barley leaves in the light. J Plant Biol, 2004, 47: 142–148[18]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Change of starch synthase in early indica rice grain and its response to air temperature at the filling stage. Sci Agric Sin (中国农业科学), 2003, 27(2): 201–208 (in Chinese with English abstract)[19]Laemmli U K. Cleavage of structural protein during the assembly of the head of the bacteriophage T4. Nature, 1970, 117: 680–685[20]Yamashita A, Nijo N, Pospisil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y. Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem, 2008, 283: 28380–28391[21]Zhang Q-F(张其芳), Liu Y(刘奕), Huang F-D(黄福灯), Hu D-W(胡东维), Cheng F-M(程方民). Ultra-structural changes of the vascular bundles and CaM Immuno-gold localization at phloem cells among different positional rachillae within a rice panicle. Acta Agron Sin (作物学报), 2009, 35(12): 2280–2287 (in Chinese with English abstract)[22]Iida S, Kobiyama A, Ogata T, Murakami A. Differential DNA Rearrangements of plastid genes, psbA and psbD, in two species of the dinofl agellate Alexandrium. Plant Cell Physiol, 2010, 51: 1869–1877[23]Silverstein T, Allen J E. Chloroplast thylakoid PS II Protein Phosphorylation protein phosphatase reactions are redox-independent and kinetieaIly heterogeneous. FEBS Lett, 1993, 332: 101–105[24]Kornyeyev D, Logan B A, Tissue D T, Allen R D, Holaday A S. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Plant Cell Physiol, 2006, 47: 437–446[25]Zhao B B, Wang J, Gong M H, Wen X G, Ren H Y, Lu C M. Effects of heat stress on PSII photochemistry in a cyanobacterium Spirulina platensis. Plant Sci, 2008, 175: 556–564[26]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang S-T(张顺堂), Liu G-H(刘国华), Tang W-B(唐文邦), He Z-Z(贺治洲). Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Sci Agric Sin (中国农业科学), 2007, 40(7): 1345–1352 (in Chinese with English abstract)[27]Wu H, Abasova L, Cheregi O, Deák Z, Gao K, Vass I. D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis. J Photochem Photobiol, 2011, 104: 320–325[28]Rintamaki E, kettunen R, Aro E M. Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. J Biol Chem, 1996, 271: 14870–14875[29]Pandey D M, Yeo U D. Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plant, 2008, 52: 291–298[30]Anderson J M, Park Y I, Chow W S. Photoinhibition and photoprotection of photosystem II in nature. Plant Physiol, 1997, 100: 214–223 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|