欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1054-1059.doi: 10.3724/SP.J.1006.2013.01054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

新型水稻57H突变体的发掘与表征

车倩倩1,郭艳萍1,李强1,王益华2,王广元3,田怀东1,*   

  1. 1 山西大学生命科学学院,山西太原030006;2 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095;3 山西省作物科学研究所,山西太原030031
  • 收稿日期:2012-12-04 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 基金资助:

    本研究由国家自然科学基金项目(31040058)资助。

Excavation and Characterization of Novel Rice 57H Mutants

CHE Qian-Qian1,GUO Yan-Ping1,LI Qiang1,WANG Yi-Hua2,WANG Guang-Yuan3,TIAN Huai-Dong1,*   

  1. 1 College of Life Science, Shanxi University, Taiyuan 030006, China; 2 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 3 Shanxi Institute of Crop Science, Taiyuan 030031, China
  • Received:2012-12-04 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22

摘要:

在正常型水稻的发育种子中,谷蛋白与醇溶蛋白在胚乳细胞内质网被合成后,作为主要储藏蛋白质分别被蓄积成液泡型蛋白体与内质网衍生型蛋白体。一些57H变异导致57 kD谷蛋白前体高量增加与成熟型谷蛋白显著减少,是关于水稻储藏蛋白蓄积的基因突变。本研究采用SDS-PAGE技术,从水稻种质资源中,发现并获得257H突变体。种子全蛋白的SDS-PAGE分析显示, 2个突变体兼具57 kD多肽链大量增加与13 kD肽链缺失的性状,但并没有成熟型谷蛋白等其它储藏蛋白性状的变化;谷蛋白电泳与免疫印染分析显示它们中高量增加的多肽链是57 kD谷蛋白前体;醇溶蛋白电泳分析显示它们中缺失的多肽链是13 kD醇溶蛋白。这些结果表明所得的2份突变体具有与已报道57H突变体不同的性状。它们可能含有关于储藏蛋白质合成表达的未知遗传信息,是全面阐明储藏蛋白合成蓄积遗传调控机制的有用素材。

关键词: 水稻, 胚乳, 储藏蛋白质, 新型57H突变体

Abstract:

Glutelins and prolamins, the main rice storage proteins, are synthesized in the ER and accumulated into the vacuolar protein body and the ER-derived protein body in endosperm cell of the developing seed of the wild type rice, respectively. Several 57H mutations have been found to cause the high increase of 57 kD glutelin precursor and the remarkable decrease of the mature glutelins, and involved in the accumulation of storage proteins in rice. In this study, two 57H mutants were newly found and obtained from rice germplasms using SDS-PAGE technique. SDS-PAGE analysis of the total seed proteins showed that the two mutants had the characters namely the great increase of 57 kD polypeptide and the lack of 13 kD polypeptide, but not alteration of characters for the mature glutelins and other storage proteins; Electrophoretic and immuno-blotting analyses of glutelin showed that the increased polypeptides was 57 kD glutelin precursor in the mutants; Electrophoretic analysis of prolamins showed that the lacked polypeptide was 13kD prolamin in them. It is indicate that the two mutants have novel characters distinct from the reported 57H mutants. They probably contain unknown genetic information for synthesis and expression of storage proteins, and are considered to be useful materials for the overall understanding of genetic mechanism regulating synthesis and accumulation of the storage proteins in rice.

Key words: Rice, Endosperm, Storage proteins, Novel 57H mutants

 


 


[1]Ogawa M, Kumamaru T, Satoh H, Iwata N, Omura T, Kasai Z, Tanaka K. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol, 1987, 28: 1517–1527



[2]Okita T W, Rogers J C. Compartmentation of proteins in the end membrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 327–350



[3]Krishnan H B, Franceschi V R, Okita T W. Immunochemical studies on the role of the golgi complex in protein-body formation in rice seeds. Planta, 1986, 169: 471–480



[4]Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K. Mutants for rice storage proteins: 1. Screening of mutants for rice storage proteins of protein bodies in the starchy endosperm. Theor Appl Genet, 1988, 76: 11–16



[5]Li X, Okita T W. Accumulation of prolamins and glutelins during rice seed development: a quantitative evaluation. Plant Cell Physiol, 1993, 34: 385–390



[6]Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol, 1986, 27: 135–145



[7]Okita T W, Hwang Y S, Hnilo J, Kim W T, Aryan A P, Larson R, Krishnan H B. Structure and expression of the rice glutelin multigene family. Biol Chem, 1989, 264: 12573–12581



[8]Tian H D, Kumamaru T, Takemoto Y, Ogawa M, Satoh H. Gene analysis of new 57H mutant gene, glup6, in rice. Rice Genet Newsl, 2001, 18: 48–50



[9]Tian H D, Satoh H, Takemoto Y. Inheritance of novel 57H mutations in rice and their effect on compartmentation of endosperm storage proteins. Int J Plant Sci, 2004, 165: 537–544



[10]Wang Y H, Zhu S S, Liu S J, Jiang L, Chen L M, Ren Y L, Han X H, Liu F, Ji S L, Liu X, Wan J M. The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J, 2009, 58: 606–617



[11]Wang Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lv J, Zhou K N, Su N, Bao Y Q, Wan J M. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J, 2010, 64: 812–824



[12]Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The Rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 128: 1212–1222



[13]Hibino T, Kidzu K, Masumura T, Otsuki K, Tanaka K, Kawabata K, Fujii S. Amino acid composition of rice prolamin polypetides. Agric Biol Chem, 1989, 53: 513–518



[14]Wen T N, Luthe D S. Biochemical characterization of rice glutelin. Plant Physiol, 1985, 78: 172–177
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!