欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1045-1053.doi: 10.3724/SP.J.1006.2013.01045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生干旱胁迫响应基因的数字表达谱分析

孙爱清1,**,张杰道2,**,万勇善1,*,刘风珍1,张昆1,孙利1   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室, 山东泰安 271018; 2 山东农业大学生命科学学院, 山东泰安 271018
  • 收稿日期:2012-07-06 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-02-19
  • 通讯作者: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: +86 (0)538 8241540
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项资金(CARS-14-07B), 国家自然科学基金项目(31101177)和山东省自然科学基金(ZR2011CQ027)资助。

In silico Expression Profile of Genes in Response to Drought in Peanut

SUN Ai-Qing1,**,ZHANG Jie-Dao2,**,WAN Yong-Shan1,*,LIU Feng-Zhen1,ZHANG Kun1,SUN Li1   

  1. 1 State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; 2 College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-07-06 Revised:2013-01-15 Published:2013-06-12 Published online:2013-02-19
  • Contact: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: +86 (0)538 8241540

摘要:

以抗旱性强的花生品种丰花5号为材料,利用Solexa高通量测序技术15% PEG处理后的花生叶片cDNA文库进行差异基因表达谱分析。结果表明,转录组基因表达表现出高度的不均一性和冗余性,低于10个拷贝的标签占总标签种类的73.1%,但其表达量只占总标签表达量的9.0%。根据已知序列信息鉴定出935个差异表达基因,其中64.5%下调表达。基因功能分析表明,差异表达基因广泛涉及糖、蛋白、核酸和脂类等生物大分子代谢、能量代谢以及次生代谢过程。在花生干旱响应基因表达谱分析中,发现9个类黄酮代谢相关基因在干旱胁迫下显著上调表达,其中4个编码类黄酮合成酶类,3个编码甲基转移酶,2个编码MYB转录因子。通过半定量RT-PCR对花生苯丙氨酸解氨酶基因(AhPAL)表达分析表明,15%PEG干旱胁迫6 h诱导该基因显著表达。推测类黄酮代谢在花生干旱胁迫响应中起重要作用。

关键词: 花生, 干旱, 高通量测序, 基因表达谱

Abstract:

Drought, one of the most important abiotic stresses, usually causes adverse effects on the productivity and quality of crops. In this study, a drought-resistant variety Fenghua 5 was used to analyse leaf cDNA library of peanut treated with 15% PEG by Solexa high-throughput technology, and detect the differentially expressed genes under drought stress. The results of Solexa sequencing indicated the gene expression in peanut transcriptome presented strong nonhomogeneity and redundancy. The sequenced tags less than 10 copies accounted for 73.1% of the total tag types, however its expression level only accounted for 9.0% of the total. A total of 935 differentially expressed genes were screened out based on the reference tags, of which 64.5% were down-regulated. These differentially expressed genes were involved in metabolisms of carbohydrate, protein, nucleic acid, lipid and energy, and secondary metabolism. Gene expression analysis of peanut also showed that nine transcripts related to flavonoid metabolism significantly up-regulated under drought stress, including four encoding flavonoid biosynthesis enzymes, three encoding methyltransferase and two encoding MYB transcription factor. The gene expression analysisusing semi-quantitative RT-PCR assays indicated that AhPAL was induced significantly by 15% PEG treatment for 6 h. The result showed that flavonoids metabolism might play an important role in peanut responding to drought stress.

Key words: Peanut, Drought, High-throughput sequencing, Gene expression profile

[1]Chen K(陈珂), Jiang Q(蒋祺), Lei Y-B(类延宝), Yin C-Y(尹春英). Physiological responses of plants to drought stress. J Anhui Agric Sci (安徽农业科学), 2009, 37(5): 1907–1908 (in Chinese with English abstract)



[2]Sun D-R(孙大容). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1998 (in Chinese)



[3]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443–448



[4]Miao J-S(苗锦山), Wang M-L(王铭伦). Advances in effects of water stress on the growth and development in peanut. J Peanut Sci (花生学报), 2003, 32: 368–371 (in Chinese)



[5]Jain A K, Basha S M, Holbrook C C. Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Mol Biotechnol Genet, 2001, 4: 502–514



[6]Bhatnagar-Mathur P, Devi M J, Reddy D S, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma K K. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep, 2007, 26: 2071–2082



[7]Yan M-L(严美玲), Li X-D(李向东), Lin Y-J(林英杰), Wang L-L(王丽丽), Zhou L-Y(周录英). Effects of drought during seedling stage on physiological traits, yield and quality of different peanut cultivars. Acta Agron Sin (作物学报), 2007, 33(1): 113–119 (in Chinese with English abstract)



[8]Nautiyal P C, Rachaputi N R, Joshi Y C. Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Res, 2002, 74: 67–79



[9]Govind G, Harshavardhan V T, Patricia J K, Dhanalakshmi R, Senthil Kumar M, Sreenivasulu N, Udayakumar M. Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genom, 2009, 281: 591–605



[10]Zhang Z-B(张正斌), Shan L(山仑). Advances of inheritance of physiological characters for drought resistance in crop. Chin Sci Bull (科学通报), 1998, 43(17): 1812–1817 (in Chinese)



[11]Zhang Z-M(张智猛), Wan S-B(万书波), Dai L-X(戴良香), Song W-W(宋文武), Chen J(陈静), Shi Y-Q(石运庆). Estimating and screening of drought resistance indexes of peanut. Chin J Plant Ecol (植物生态学报), 2011, 35(1): 100–109 (in Chinese with English abstract)



[12]Sankar B, Jaleel C A, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R. Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Coll Surf B Biointerfaces, 2007, 60: 229–235



[13]Teng X-K(滕晓坤), Xiao H-S(肖华胜). The prospect analysis of gene chip and high throughput technologies for DNA sequencing. Sci China (Ser C) (中国科学C辑), 2008, 38(10): 891–899 (in Chinese)



[14]Sun A-Q(孙爱清), Wan Y-S(万勇善), Liu F-Z(刘风珍), Zhang K(张昆), Qin X-G(秦兴国). Effects of drought stress on photosynthetic characteristics and yield of different peanut varieties. Shandong Agric Sci (山东农业科学), 2010, (10): 32–38 (in Chinese with English abstract)



[15]Zhang Z-M(张智猛), Wan S-B(万书波), Dai L-X(戴良香), Song W-W(宋文武), Chen J(陈静), Miao H-R(苗华荣). Index screening and comprehensive evaluation for drought resistance of peanut varieties at germination stage. J Agric Sci Technol (中国农业科技导报), 2010, 12(1): 85–91 (in Chinese with English abstract)



[16]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995



[17]Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K. Functional annotation of a full length Arabidopsis cDNA collection. Science, 2002, 296: 141–145



[18]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227



[19]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196–1200



[20]Rahaie M, Xue G P, Naghavi M R, Alizadeh H, Schenk P M. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep, 2010, 29: 835–844



[21]Akkasaeng C, Tantisuwichwong N, Chairam I, Prakrongrak N, Jogloy S, Pathanothai A. Isolation and identification of peanut leaf proteins regulated by water stress. Pak J Biol Sci, 2007, 10: 1611–1617



[22]Kralj S, van Geel-Schutten G H, Rahaoui H, Leer R J, Faber E J, van der Maarel MJEC, Dijkhuizen L. Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with {alpha}-(1->4) and {alpha}-(1->6) glucosidic bonds. Appl Environ Microbiol, 2002, 68: 4283–4291



[23]Han J, Lühs W, Sonntag K, Zähringer U, Borchardt D S, Wolter F P, Heinz E, Frentzen M. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol, 2001, 46: 229–239



[24]Wang W X, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004, 9: 244–252



[25]Sautel C F, Ortet P, Saksouk N, Kieffer S, Garin J, Bastien O, Hakimi M A. The histone methylase KMTox interacts with the redox-sensor peroxiredoxin-1 and targets genes involved in Toxoplasma gondii antioxidant defences. Mol Microbiol, 2009, 71: 212–226



[26]Mittler R, Lam E. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell, 1995, 7: 1951–1962



[27]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninic P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis L-myo-inosi-genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61–72



[28]Jang J Y, Kim D G, Kim Y O, Kim J S, Kang H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol, 2004, 54: 713–725



[29]Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seed. Plant J, 2006, 47: 310–327



[30]Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci, 2006, 11: 15–19



[31]Canada A T, Giannella E, Nguyen T D, Mason R P. The production of reactive oxygen species by dietary flavonols. Free Radic Biol Med, 1990, 9: 441−449



[32]Liu L(刘蕾), Du H(杜海), Tang X-F(唐晓凤), Wu Y-M(吴燕民), Huang Y-B(黄玉碧), Tang Y-X(唐益雄). The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas (遗传), 2008, 30(10): 1265−1271 (in Chinese with English abstract)



[33]Christie P J, Alfenito M R, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, 194: 541−549



[34]Xu Z-R(许志茹), Li C-L(李春雷), Cui G-X(崔国新), Sun Y(孙燕). MYB protein of anthocyanin biosynthesis in plant. Plant Physiol Commun (植物生理学通讯), 2008, 44(3): 597−603 (in Chinese with English abstract)



[35]Su H(苏虎), Zhou C-L(周春丽). Influences of different adversity stress on total flavones content in Sarcandra glabra (Thunb) Nakai. J Anhui Agric Sci (安徽农业科学), 2009, 37(17): 7995−7996 (in Chinese with English abstract)



[36]Zhang C-J(张成军), Guo J-Q(郭佳秋), Chen G-X(陈国祥), Xie H-C(解恒才). Effects of high temperature and/or drought on growth and secondary metabotites in Ginkgo biloba leaves. Rural Eco-Environ (农村生态环境), 2005, 21(3): 11−15 (in Chinese with English abstract)



[37]Saito K, Kobayashi M, Gong Z, Tanaka Y, Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J, 1999, 17: 181−189



[38]Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683–1696



[39]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573−581

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[7] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[8] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[9] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[10] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[13] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[14] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[15] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!