欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1179-1186.doi: 10.3724/SP.J.1006.2013.01179

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用相互嫁接和定量PCR分析棉花对棉花黄萎病的抗性

郝俊杰1,**,*,胡雨薇1,**,郭晓琴2,赵付安3,贾新合4,郭利娟1,张志新1,王庆东5,*   

  1. 1河南省农业科学院植物保护研究所 / 农业部华北南部作物有害生物综合治理重点实验室 / 河南省农作物病虫害防治重点实验室, 河南郑州450002; 2中州大学化工食品学院, 河南郑州450044; 3河南省农业科学院经济作物研究所, 河南郑州450002; 4郑州市农林科学研究所, 河南郑州450005; 5郑州大学生物工程系, 河南郑州450001
  • 收稿日期:2012-11-29 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 郝俊杰, E-mail: haojjds@yahoo.com.cn; 王庆东, E-mail: qdwang@zzu.edu.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08005-002)和国家现代农业产业技术体系建设专项(CARS-18)资助。

Analysis of Resistance to Verticillium Wilt in Cotton by Reciprocal Grafting and Real-time Quantitative PCR

HAO Jun-Jie1,**,*,HU Yu-Wei1,**,GUO Xiao-Qin2,ZhAO Fu-An3,JIA Xin-He4,GUO Li-Juan1,ZHANG Zhi-Xing1,WANG Qing-Dong5,*   

  1. 1 Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Ministry of Agriculture / Henan Key Laboratory for Control of Crop Diseases and Insect Pests / Plant Protection Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 College of Chemical and Food Engineering, Zhongzhou University, Zhengzhou 450044, China; 3 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 4 Zhengzhou Institute of Agriculture and Forestry Sciences, Zhengzhou 450002, China; 5 Department of Biology Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2012-11-29 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 郝俊杰, E-mail: haojjds@yahoo.com.cn; 王庆东, E-mail: qdwang@zzu.edu.cn

摘要:

为了研究棉花对棉花黄萎病的抗性机制, 本文选用对棉花黄萎病表现抗病的海岛棉(Gossypium barbadense)材料海7124Pima 90及感病的陆地棉(G. hirsutum)材料冀棉11, 通过相互嫁接的方法构建试验系统, 用棉花黄萎菌对其人工接种, 利用Real-time quantitative PCR (qPCR)技术分析其在感病和抗病棉花中侵染的差别。相互嫁接试验中/抗和抗/感组合的病情指数介于/感和抗/抗对照之间, 且相互嫁接棉株各个部位的IC(侵染系数)也多介于其对照相应部位之间; 并且病情指数与不同部位IC值显著相关, 说明棉花黄萎菌可以通过接口在抗-感之间扩展。感/抗嫁接组合试验说明抗病材料的茎基部在抑制病原菌扩展中起重要的作用, 而抗/感类型试验说明抗病材料接口以上部分也具有抑制病原菌增殖的作用。总之, 抗病海岛棉无论作为砧木还是接穗, 都能有效抑制病原菌的扩展, 说明抗病海岛棉对棉花黄萎菌具全株抗性, 但茎基部在抑制病原菌扩展中起重要的作用; 同样, /抗和抗/感组合试验也说明感病材料的各个部位均不能抑制病原菌的定殖和扩展。

关键词: 棉花黄萎病, 相互嫁接, 实时定量PCR

Abstract:

In an attempt to better understand the resistance mechanism of controlling cotton Verticillium wilt by locating responsible for resistance in the plant, reciprocal grafts were made between resistant (Gossypium barbadense, Hai 7124 and Pima 90) and susceptible (G. hirsutum, Jimian 11) genotypes. The grafting combinations were inoculated with Verticillium dahliae. Quantitative monitoring of colonization of V. dahliae in different parts of the plant was analyzed using Real-time quantitative PCR (qPCR). When comparing resistant/susceptible or susceptible/resistant grafted combinations with their resistant and susceptible self-graft checks, respectively, disease index of reciprocal grafts and IC (infection coefficient) values of different parts of the plant were nearly within a range between their corresponding checks, respectively, indicating the pathogens could be transferred through the graft union in reciprocal grafts. The disease index was significantly related with average IC values in different parts of plant in different cotton types. Susceptible/resistant grafted combinations showed basal stem of resistant genotypes had an important role on inhibiting translocation of the pathogens, and resistant/susceptible grafted combinations also showed upper stem above graft union with the resistant ability to V. dahliae in resistant genotypes, which indicated that the resistant genotype G. barbadense has the whole-plant of resistance to V. dahliae. In addition, it seems that all parts of the plant in susceptible genotypes (G. hirsutum) were susceptible to V. dahliae.

Key words: Cotton Verticillium wilt, Reciprocal grafting, Real-time quantitative PCR

[1]Heinz R, Lee S W, Saparno A, Nazar R N, Robb J. Cyclical systemic colonization in Verticillium-infected tomato. Physiol Mol Plant Pathol, 1998, 52: 385–96



[2]Fradin E F, Zhang Z, Juarez Ayala J C, Castroverde C D M, Nazar R N, Robb J, Liu C M, Thomma B P H J. Genetic dissection of verticillium wilt resistance mediated by tomato Ve1. Plant Physiol, 2009, 150: 320–332



[3]Shen Q-Y(沈其益). Basic Studies and Control of Cotton Disease (棉花病害基础研究与防治). Beijing: Science Press, 1992 (in Chinese)



[4]Hao J-J(郝俊杰), Ma Q-X(马奇祥), Liu H-M(刘焕民), Jia X-H(贾新合), Dong Z-D(董中东), Liu S-M(刘书梅), Cui X-W(崔小伟), Zhang Z-X(张志新). Effects of grafting cotton on verticillium wilt resistance, yield and fiber quality of cotton. Sci Agric Sin (中国农业科学), 2010, 43(19): 3974–3980 (in Chinese with English abstract)



[5]Rusk N. Grafting as a potent molecular tool. Nat Methods, 2009, 6: 484



[6]Kim M, Canio W, Kessler S, Sinha N. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science, 2001, 293: 287–289



[7]Haywood V, Yu T S, Huang N C, Lucas W J. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J, 2005, 42: 49–68



[8]Martin A, Adam H, Díaz-Mendoza M, Zurczak M, González-Schain N D, Suárez-López P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136: 2873–2881



[9]Park S W, Kaimoyo E, Kumar D, Mosher S, Klessig D F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007, 318: 113–116



[10]Bachman M S, Nickell C D. Use of reciprocal grafting to study brown stem rot resistance in soybean. Phytopathology, 1999, 89: 59–63



[11]Mueller D S, Li S, Hartman G L, Pedersen W L. Use of aeroponic chambers and grafting to study partial resistance to Fusarium solani f. sp. glycines in soybean. Plant Dis, 2002, 86: 1223–1226



[12]Ma P(马平). A new inoculation method for Verticillium wilt on cotton and its application in valuating pathogenesis and host resistance. Acta Phytopathol Sin (植物病理学报), 2004, 34(6): 536–541 (in Chinese with English abstract)



[13]Atallah Z K, Bae J, Jansky S H. Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology, 2007, 97: 865–872



[14]Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I, Gessler C. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology, 2005, 95: 672–678



[15]Eynck C, Koopmann B, Grunewaldt-Stöcker G, Karlovsky P, von Tiedemann A. Differential interactions of Verticillium longisporum and Verticillium dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol, 2007, 118: 259–274



[16]Dong H, Niu Y, Li W, Zhang D. Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008, 59: 1295−1304



[17]Wen T(文婷), Li P-B(李朋波), Jiang S-Q(姜淑琴), Pu J-F(蒲剑锋), Wang Y-M(王玉美), Liu W-X(刘文欣), Hua J-P(华金平). Study on cotton resistance to Verticillium wilt by grafting. Sci Agric Sin (中国农业科学), 2011, 44(24): 5130−5136 (in Chinese with English abstract)



[18]Vallad G E, Subbarao K V. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology, 2008, 98: 871−885



[19]Dan H, Ali-Khan S T, Robb J. Use of quantitative PCR diagnostics to identify tolerance and resistance to Verticillium dahliae in potato. Plant Dis, 2001, 85: 700−705



[20]Larsen R C, Vandemark G J, Hughes T J. Development of a real-time polymerase chain reaction assay for quantifying Verticillium alboatrum DNA in resistant and susceptible alfalfa. Phytopathology, 2007, 97: 1519−1525



[21]Mercado-Blancoa J, Collado-Romeroa M, Parrilla-Araujoa S, Rodriguez-Juradoa D, Jimenez-Diaz R M. Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiol Mol Plant Pathol, 2003, 63: 91–105



[22]Goud J C, Termorshuizen A J. Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. Eur J Plant Pathol, 2003, 109: 523–53
[1] 翟玉山,邓宇晴,董萌,徐倩,程光远,彭磊,林彦铨*,徐景升*. 甘蔗捕光叶绿素a/b 结合蛋白基因ScLhca3 的克隆及表达[J]. 作物学报, 2016, 42(09): 1332-1341.
[2] 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258.
[3] 黄珑,苏炜华,张玉叶,黄宁,凌辉,肖新换,阙友雄,陈如凯. 甘蔗CIPK基因的同源克隆与表达[J]. 作物学报, 2015, 41(03): 499-506.
[4] 王震,范晓静,张淼,张芳凝,李桂东,马翎健*. ATP合成相关基因在小麦BNS不育系育性转换中的差异表达[J]. 作物学报, 2014, 40(08): 1501-1505.
[5] 杨静静, 李亚宁, 李星, 刘大群. 小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系[J]. 作物学报, 2010, 36(12): 2028-2034.
[6] 马雄风,喻春明,唐守伟,朱爱国,王延周,朱四元,刘建新,熊和平. 苎麻Actinl基因克隆及其在韧皮部纤维不同发育阶段的表达[J]. 作物学报, 2010, 36(1): 101-108.
[7] 王俊美,刘红彦,徐红明,王飞,高素霞,康振生. 应用基因芯片分析红蚰麦白粉菌胁迫条件下的基因表达谱[J]. 作物学报, 2009, 35(7): 1188-1193.
[8] 琚铭, 王海棠, 王立科, 李飞飞, 吴慎杰, 朱华玉, 张天真, 郭旺珍. 棉纤维发育相关基因时空表达与纤维品质的关联分析[J]. 作物学报, 2009, 35(7): 1217-1228.
[9] 韦克苏;张其芳;程方民;钟连进;陈能;谢黎红. 花后高温下水稻可溶性淀粉合酶同工型基因的表达模式[J]. 作物学报, 2009, 35(1): 18-24.
[10] 刘建新;喻春明;唐守伟;朱爱国;王延周;朱四元;马雄风;熊和平. 苎麻果胶合成重要酶UGlcAE基因的克隆及组织表达[J]. 作物学报, 2008, 34(11): 1938-1945.
[11] 徐孟亮;陈荣军;ROCHA Pedro;李落叶;王曼玲;徐国云;夏新界. 一个新的水稻逆境响应基因OsMsr1的表达与克隆[J]. 作物学报, 2008, 34(10): 1712-1718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!