作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1187-1199.doi: 10.3724/SP.J.1006.2013.01187
张国华1,高明刚1,2,张桂芝1,孙金杰1,靳雪梅1,王春阳1,赵岩1,李斯深1,*
ZHANG Guo-Hua1,GAO Ming-Gang1,2,ZHANG Gui-Zhi1,SUN Jin-Jie1,JIN Xue-Mei1,WANG Chun-Yang1,ZHAO Yan1,LI Si-Shen1,*
摘要:
[1]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with ssr markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169–1178 (in Chinese with English abstract)[2]Tanksley S D, McCouch S R. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066[3]Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determine agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921–936[4]Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007, 12: 57–63[5]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin (作物学报), 2010, 36(6): 895–904 (in Chinese with English abstract)[6]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526–1535 (in Chinese with English abstract)[7]Li W-Y(李玮瑜), Zhang B(张斌), Zhang J-N(张嘉楠), Chang X-P(昌小平), Li R-Z(李润植), Jing R-L(景蕊莲). Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agron Sin (作物学报), 2012, 38(6): 962–970 (in Chinese with English abstract)[8]Lu L, Yan W H, Xue W Y, Shao D, Xing Y Z. Evolution and association analysis of Ghd7 in Rice. PLoS ONE, 2012, 7: e34021[9]Reif J C, Gowda M, Maurer H P, Longin C F H, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T. Association mapping for quality traits in soft winter wheat. Theor Appl Genet, 2011, 122: 961–970[10]Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed, 2012, 29: 963–972[11]Hao C Y, Wang Y Q, Hou J, Feuillet C, Balfourier F, Zhang X Y. Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS. PLoS ONE, 2012, 7: e46444[12]Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1–10[13]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206–217[14]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Char-cosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437[15]Zhao B(赵波), Ye J(叶剑), Jin W-L(金文林), Zeng C-W(曾潮武), Wu B-M(吴宝美), Pu S-J(濮绍京), Pan J-B(潘金豹), Wan P(万平). Analysis on genetic diversity and trait association of different types of adzuki bean (Vigna angularisi) by SSR markers. Sci Agric Sin (中国农业科学). 2011, 44(4): 673–682 (in Chinese with English abstract)[16]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236: 1507–1517[17]Wu Y-G(武玉国), Wu C-L(吴承来), Qin B-P(秦保平), Wang Z-L(王振林), Huang W(黄玮), Yang M(杨敏), Yin Y-P(尹燕枰). Diversity of SSR marker in 175 wheat varieties from Huang-Huai Winter Wheat region and its association with plant height and yield related traits. Acta Agron Sin (作物学报), 2012, 38(5): 1–11 (in Chinese with English abstract)[18]Sun X Y, Wu K, Zhao Y, Kong F M, Han G Z, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615–624[19]Beek J G, Verkerk R, Zabel P, Lindhout P. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet, 1992, 84: 106–112[20]Chen H M, Li L Z, Wei X Y, Li SS, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336[21]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10[22]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194[23]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129[24]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959[25]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620[26]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208[27]Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618–620[28]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE, 2012, 7: e39432[29]Yao J, Wang L X, Liu L H, Zhao C P, Zheng Y L. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, 137: 67–75[30]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics, 2008, 35: 119–127[31]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat (Triticum aestivum L.) under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937[32]Chu C G, Xu S S, Friesen T L, Faris J D. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed, 2008, 22: 251–266[33]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178[34]Wang Y Y, Sun X Y, Zhao Y, Kong F M, Guo Y, Zhang G Z, Pu Y Y, Wu K, Li S S. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci, 2011, 181: 65–75 |
[1] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[2] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[7] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[8] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[11] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[12] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[13] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[14] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[15] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
|