欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1187-1199.doi: 10.3724/SP.J.1006.2013.01187

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄淮麦区小麦品种(系)产量性状与分子标记的关联分析

张国华1,高明刚1,2,张桂芝1,孙金杰1,靳雪梅1,王春阳1,赵岩1,李斯深1,*   

  1. 1作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安 271018; 2潍坊学院生物与农业工程学院,山东潍坊 261061
  • 收稿日期:2013-01-10 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 李斯深, E-mail: ssli@sdau.edu.cn, Tel: 0538-8242903
  • 基金资助:

    本研究由山东省农业生物资源创新利用研究项目和山东省现代农业产业体系建设项目资助。

Association Analysis of Yield Traits with Molecular Markers in Huang-Huai River Valley Winter Wheat Region, China

ZHANG Guo-Hua1,GAO Ming-Gang1,2,ZHANG Gui-Zhi1,SUN Jin-Jie1,JIN Xue-Mei1,WANG Chun-Yang1,ZHAO Yan1,LI Si-Shen1,*   

  1. 1 State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China; 2 Department of Biological and Agricultural Engineering, Weifang University, Weifang 261061, China
  • Received:2013-01-10 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 李斯深, E-mail: ssli@sdau.edu.cn, Tel: 0538-8242903

摘要:

为了获得与小麦产量性状关联的分子标记,筛选相关标记的等位变异,以128份黄淮麦区小麦品种()为材料,在4个环境下鉴定产量性状,并选用在小麦全基因组21条染色体上的64SSR标记、27EST-SSR标记和47个功能标记检测所有材料的基因型。91SSREST-SSR标记共检测到315个等位变异,单个引物检测到2~7个等位变异,平均3.5个;47个功能标记共检测到107个等位变异,单个引物检测到2~5个等位变异,平均2.3个。关联分析表明,49个位点与4个环境的产量性状及其均值显著关联(P≤0.005),其中38个位点在2个或以上环境或均值下被重复验证,16个位点与2个或以上性状相关联。对相对稳定的等位变异作进一步分析,发掘了一批与产量性状相关的优异等位变异,如降低株高的等位变异Ax2*-nullUMN19*-A362,增加穗长的等位变异barc21-A220,增加可育小穗数的等位变异gpw2111-A156,增加总小穗数的等位变异swes65-A120,增加穗数的等位变异VRN-A1*-A1068,增加穗粒数的等位变异cfd5-A215和增加千粒重的等位变异wmc626-A170。研究结果对利用分子标记辅助选择进行小麦产量性状的遗传改良具有一定的指导意义。

关键词: 小麦, 分子标记, 产量性状, 关联分析, 等位变异

Abstract:

Grain yield is an important breeding target in wheat, which is controlled by complex genetic factors and strongly influenced by environments. In this study, the yield and yield-related traits of 128 wheat varieties/lines from the Huang-Huai River Valley Winter Wheat Region were evaluated in four growing environments. A total of 64 SSR, 27 EST-SSR and 47 functional markers were used to genotype these varieties/lines. Ninety-one SSR and EST-SSR markers produced 315 alleles, with 2–7 alleles on each locus and an average of 3.5. Forty-seven functional markers produced 107 alleles, with 2–5 alleles per locus and an average of 2.3. A total of 49 markers were significantly associated (P ≤ 0.005) with yield traits. Of which, 38 loci were associated with the same trait when analyzed by using the phenotypic values in multiple environments or using the average values, and 16 loci were associated with at least two traits simultaneously. Some favorable alleles associated with yield traits in multiple environments were discovered, such as Ax2*-null and UMN19*-A362 for reducing plant height, barc21-A220 for increasing spikelet length, gpw2111-A156 for increasing fertile spikelet number per spike, swes65-A120 for increasing spikelet number per spike, VRN-A1*-A1068 for increasing spike number, cfd5-A215 for increasing kernel number per spike, and wmc626-A170 for increasing thousand-kernel weight. These results may provide useful information for marker-assisted selection in wheat breeding programs for yield traits.

Key words: Wheat, Molecular marker, Yield-related traits, Association analysis, Allele

[1]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with ssr markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169–1178 (in Chinese with English abstract)



[2]Tanksley S D, McCouch S R. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066



[3]Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determine agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921–936



[4]Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007, 12: 57–63



[5]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin (作物学报), 2010, 36(6): 895–904 (in Chinese with English abstract)



[6]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526–1535 (in Chinese with English abstract)



[7]Li W-Y(李玮瑜), Zhang B(张斌), Zhang J-N(张嘉楠), Chang X-P(昌小平), Li R-Z(李润植), Jing R-L(景蕊莲). Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agron Sin (作物学报), 2012, 38(6): 962–970 (in Chinese with English abstract)



[8]Lu L, Yan W H, Xue W Y, Shao D, Xing Y Z. Evolution and association analysis of Ghd7 in Rice. PLoS ONE, 2012, 7: e34021



[9]Reif J C, Gowda M, Maurer H P, Longin C F H, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T. Association mapping for quality traits in soft winter wheat. Theor Appl Genet, 2011, 122: 961–970



[10]Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed, 2012, 29: 963–972



[11]Hao C Y, Wang Y Q, Hou J, Feuillet C, Balfourier F, Zhang X Y. Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS. PLoS ONE, 2012, 7: e46444



[12]Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1–10



[13]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206–217



[14]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Char-cosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[15]Zhao B(赵波), Ye J(叶剑), Jin W-L(金文林), Zeng C-W(曾潮武), Wu B-M(吴宝美), Pu S-J(濮绍京), Pan J-B(潘金豹), Wan P(万平). Analysis on genetic diversity and trait association of different types of adzuki bean (Vigna angularisi) by SSR markers. Sci Agric Sin (中国农业科学). 2011, 44(4): 673–682 (in Chinese with English abstract)



[16]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236: 1507–1517



[17]Wu Y-G(武玉国), Wu C-L(吴承来), Qin B-P(秦保平), Wang Z-L(王振林), Huang W(黄玮), Yang M(杨敏), Yin Y-P(尹燕枰). Diversity of SSR marker in 175 wheat varieties from Huang-Huai Winter Wheat region and its association with plant height and yield related traits. Acta Agron Sin (作物学报), 2012, 38(5): 1–11 (in Chinese with English abstract)



[18]Sun X Y, Wu K, Zhao Y, Kong F M, Han G Z, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615–624



[19]Beek J G, Verkerk R, Zabel P, Lindhout P. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet, 1992, 84: 106–112



[20]Chen H M, Li L Z, Wei X Y, Li SS, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336



[21]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10



[22]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194



[23]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129



[24]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959



[25]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620



[26]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208



[27]Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618–620



[28]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE, 2012, 7: e39432



[29]Yao J, Wang L X, Liu L H, Zhao C P, Zheng Y L. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, 137: 67–75



[30]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics, 2008, 35: 119–127



[31]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat (Triticum aestivum L.) under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937



[32]Chu C G, Xu S S, Friesen T L, Faris J D. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed, 2008, 22: 251–266



[33]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178



[34]Wang Y Y, Sun X Y, Zhao Y, Kong F M, Guo Y, Zhang G Z, Pu Y Y, Wu K, Li S S. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci, 2011, 181: 65–75

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!