作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1231-1239.doi: 0.3724/SP.J.1006.2013.01231
赵志刚**,富贵**,邓昌蓉,杜德志*
ZHAO Zhi-Gang**,FU Gui**,DENG Chang-Rong,DU De-Zhi*
摘要:
为了揭示人工甘蓝型油菜早期世代遗传和表观遗传变异规律, 以A组合(大黄油菜×中花芥蓝) S0世代、B组合(大黄油菜×中迟芥蓝) S0和S1世代人工甘蓝型油菜为材料, 分别利用AFLP和MSAP技术检测基因组变化及甲基化模式变化情况。结果表明, 16对引物在A组合S0扩增到523条带, 其中4对引物扩增出9条变异带, 包括7条亲本缺失带和2条新增带, 分别占S0总条带的1.33%和0.38%;45对引物在B组合双亲植株扩增到1093条带, 只有1对引物检测到1条父本带型在所有S0植株中缺失, 约占S0总条带的0.09%;在B9子代F19-1~F19-16总共扩增得到1092条带, 变异带有10条, 占总条带的0.915%, 其中包括9条缺失带和1条新增带, 9条缺失带全部位于C基因组。MSAP检测发现, B组合S0植株中有3个位点发生了甲基化模式的改变, 全部位于A基因组, 甲基化模式改变位点占总检测位点的1.37%。研究还发现B组合S0世代一个植株出现可遗传的花色变异, 推测该表型变异与B组合人工甘蓝型油菜中C基因组变异有关。
[1]Allard R W, Garcia P, Saenz-de-miera L E, Pérez de la Vega M. Evolution of multilocus genetic structure in Avena-Hirtula and Avena-Barbata. Genetics, 1993, 135: 1125–1139[2]Cui L, Wall P K, Leebens-Mack J H, Lindsay B G, Soltis D E, Doyle J J, Soltis P S, Carlson J E, Arumuganathan K, Barakat A, Albert V A, Ma H, dePamphilis C W. Widespread genome duplications throughout the history of ?owering plants. Genome Res, 2006, 16: 738–749 [3]Kenton A, Parokonny A S, Gleba Y Y, Bennett M D. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Genet Genom, 1993, 240: 159–169[4]Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modi?cation in nucleolar dominance. Genes Dev, 1997, 11: 2124–2136[5]Attia T, Robbelen G. Cytogentic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Genet Cytol, 1986, 28: 323–329[6]Shaked H, Kashkush K, Ozkan H. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 1749–1759[7]Wang J, Tian L, Madlung A, Lee H S, Chen M, Lee J J, Watson B, Kagochi T, Comai L. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics, 2004, 167: 1961–1973[8]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allot etraploid. Genetics, 2002, 160: 1651–1659[9]Chen Z J, Ni Z F. Mechanisms of genomic rearrangements and gene expression changs in plant polyoids. BioEssays, 2006, 28: 240–252[10]Ma X F, Fang P, Gustafson J P. Polyploidization-induced genome variation in Triticale. Genome, 2004, 47: 839–848[11]Reyna-Lopez G E, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphictransition of fungi by amplification of restriction polymorphisms. Mol Gen Genet ,1997, 253:703–710[12]Xu M, Li X, Korban S S. AFLP-based detection of DNA methylation. Plant Mol Biol Rep, 2000, 18: 361–368[13]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genet, 2002, 268: 543–552[14]Bardini M, Labra M, Winfield M, Sala F. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tiss Org, 2003, 72: 157–162[15]Zhang X L, Ge X H, Shao Y J, Sun G L, Li Z Y. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PloS One, 2013, 8: 1–10[16]McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucl Acid Res, 1994, 22: 3640–3659[17]Fu G(富贵), Zhao Z-G(赵志刚), Du D-Z(杜德志). Large seed resynthesized Brassica napus from hybrid of Brassica rapa and Brassica oleracea var alboglabra. Chin J Oil Crop Sci (中国油料作物学报), 2012 , 34(2): 136–141 (in Chinese with English abstract)[18]Saghai-Maroof M A, Soliman K M, Jorgenson R. Ribosomal DNA spacer-lengthpolymorphisms in barley: mendelian inheritance, chromosomal location and populaion dynamics. Proc Natl Acad Sci, 1984, 81: 8014–8018[19]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23: 4407–4414[20]Xiong L Z, Xu C G, Saghai Maroof M A, Zhang Q F. Patterns of cytosine methylation pattern in an elite rice hybrid and its parental lines detected by a methylation polymorphism technique. Mol Gen Genet, 1999, 261: 139–446[21]Xu Y, Zhong L, Wu X, Fang X, Wang J B. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 2009, 229: 471–483[22]Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141[23]Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genom, 2002, 3: 489–505[24]Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol, 2003, 29: 365–379[25]Lukens L, Quijada P A, Udall J, Pires J C, Schranz M E, Osborn T. Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc, 2004, 82: 675–688[26]Song K, Lu P, Tang K, Osborn T. Rapid genomic change in synthetic polyploids of Brassica and its implication for polyploid evolution. Proc Natl Acad Sci, 1995, 92: 7719–7723[27]Tu Y Q, Sun J, Ge X H, Li Z Y. Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot, 2009, 103: 1039–1048[28]Shan X H, Liu Z L, Dong Z Y, Wang Y M, Chen Y, Lin X Y, Long L K, Han F P, Dong Y S, Liu B. Mobilization of the active mite trans-posons mPing and Pong in rice by introgression from wild rice (Zizanialatifolia Griseb.). Mol Biol Evol, 2005, 22: 976–990[29]Ozkan H, Levy A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735–1747[30]Gaeta R T, Pires J C, Iniguez-Luy F, Leon E, Osborn T C. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell, 2007, 19: 3403–3417[31]Gaeta R T, Pires J C. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol, 2010, 186: 18–28 [32]Chen L Z H, Lou Q F , Zhuang Y, Chen J F, Zhang X Q, Wolukau J N. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis× hytivus. Planta, 2007, 225: 603–614[33]Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol, 2000, 43: 387–399[34]Pires J C, Zhao J, Schranz M E, Leon E J, Quijada A, Lukens L N, Osborn T C. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploid (Brassicacae). Biol J Linnean Soc, 2004, 82: 675–688[35]Schranz M E, Osborn T C. De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am J Bot, 2004, 91: 174–183 |
[1] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[2] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[3] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[4] | 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055. |
[5] | 昝逢刚,吴才文,陈学宽,赵培方,赵俊,刘家勇*. 118份甘蔗种质资源遗传多样性的AFLP分析[J]. 作物学报, 2014, 40(10): 1877-1883. |
[6] | 逯晓萍,刘丹丹,王树彦,米福贵,韩平安,吕二锁. 高丹草遗传效应与杂种表现预测模型[J]. 作物学报, 2014, 40(03): 466-475. |
[7] | 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59. |
[8] | 李锁平,张大乐,王秀娥,亓增军,刘大钧. 节节麦和黑麦杂种F1及双二倍体中基因组变异分析[J]. 作物学报, 2012, 38(06): 996-1002. |
[9] | 陈荣平, 刘磊, 万秀清, 邱恩建, 王春军, 宋宝刚, 颜培强, 杨铁钊. TMV侵染烟草基因差异表达的cDNA-AFLP分析[J]. 作物学报, 2012, 38(01): 62-70. |
[10] | 李宁, 黄茜, 刘燕, 赵丹, 刘艳, 黄占景, 张增艳. 小麦抗病基因类似序列BRG1的分离与功能分析[J]. 作物学报, 2011, 37(06): 998-1004. |
[11] | 李明. 亚麻种质资源遗传多样性与亲缘关系的AFLP分析[J]. 作物学报, 2011, 37(04): 635-640. |
[12] | 王栋,张志娥,陈晓玲,辛霞,辛萍萍,卢新雄. AFLP标记分析生活力影响大豆中黄18种质遗传完整性[J]. 作物学报, 2010, 36(4): 555-564. |
[13] | 张岗,董艳玲,夏宁,张毅,王晓杰,屈志鹏,李依民,黄丽丽,康振生. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J]. 作物学报, 2010, 36(3): 401-409. |
[14] | 刘新龙,毛钧,陆鑫,马丽,Karen Sarah AITKEN,Phillip Andrew JACKSON,蔡青,范源洪. 甘蔗SSR和AFLP分子遗传连锁图谱构建[J]. 作物学报, 2010, 36(1): 177-183. |
[15] | 韩利涛,姜伟,杨守萍,喻德跃,盖钧镒. 大豆细胞质雄性不育系MADS-box基因的分离分析[J]. 作物学报, 2010, 36(06): 905-910. |
|