欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1231-1239.doi: 0.3724/SP.J.1006.2013.01231

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

人工合成甘蓝型油菜早期世代基因组变异的AFLP和MSAP标记研究

赵志刚**,富贵**,邓昌蓉,杜德志*   

  1. 青海大学农林科学院 / 青海省高原作物种质资源创新与利用国家重点实验室培育基地, 青海西宁 810016
  • 收稿日期:2012-11-07 修回日期:2013-03-12 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 杜德志, E-mail: qhurape@126.com, Tel: 0971-5366520
  • 基金资助:

    本研究由国家自然科学基金项目(30960200),国家“十二五”科技支撑计划项目(2011BAD35B04),国家重点基础研究发展计划(973计划)前期研究项目(2011CB111500)和青海省应用基础研究项目(2011-Z-701)资助。

AFLP and MSAP Analysis on Genetic Variation in Early Generations of Artificially Synthesized Brassica napus

ZHAO Zhi-Gang**,FU Gui**,DENG Chang-Rong,DU De-Zhi*   

  1. Academy of Agriculture and Forestry, Qinghai University / National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Xining 810016, China
  • Received:2012-11-07 Revised:2013-03-12 Published:2013-07-12 Published online:2013-04-23
  • Contact: 杜德志, E-mail: qhurape@126.com, Tel: 0971-5366520

摘要:

为了揭示人工甘蓝型油菜早期世代遗传和表观遗传变异规律, A组合(大黄油菜×中花芥蓝) S0世代、B组合(大黄油菜×中迟芥蓝) S0S1世代人工甘蓝型油菜为材料, 分别利用AFLPMSAP技术检测基因组变化及甲基化模式变化情况。结果表明, 16对引物在A组合S0扩增到523条带, 其中4对引物扩增出9条变异带, 包括7条亲本缺失带和2条新增带, 分别占S0总条带的1.33%0.38%45对引物在B组合双亲植株扩增到1093条带, 只有1对引物检测到1条父本带型在所有S0植株中缺失, 约占S0总条带的0.09%;在B9子代F19-1~F19-16总共扩增得到1092条带, 变异带有10, 占总条带的0.915%, 其中包括9条缺失带和1条新增带, 9条缺失带全部位于C基因组。MSAP检测发现, B组合S0植株中有3个位点发生了甲基化模式的改变, 全部位于A基因组, 甲基化模式改变位点占总检测位点的1.37%。研究还发现B组合S0世代一个植株出现可遗传的花色变异, 推测该表型变异与B组合人工甘蓝型油菜中C基因组变异有关。

关键词: 人工合成甘蓝型油菜, 基因组序列变异, AFLP, MSAP

Abstract:

In order to reveal pattern of genetic and epigenetic changes following allopolyploidization of A and C genomes in Brassica, AFLP (amplified fragment length polymorphism) was utilized to detect level of genome changes for S0 plants of cross A (Qinghai Dahuang×Zhonghua Jielan) and S0, S1 plants of cross B (Qinghai Dahuang×Zhongchi Jielan). Moreover, MSAP (methylation sensitive amplification polymorphism) was utilized to detect level of methylation changes for S0 plants of cross B. Five hundred and twenty three bands were amplified in S0 plants of cross A with 16 pairs of primer, nine out of these bands amplified showed significant differences between S0 and parents plants, mainly including deletion of seven parental restriction fragments and gain of two new fragments, accounting for 1.33% and 0.38% of total fragments, respectively. One thousand and ninety three bands were amplified in parental plants of B cross with 45 pairs of primer, only one from C genome out of these fragments lost in all S0 plants, accounting for 0.09% of total bands. In 16 S1 plants from the B9 plant, 10 out of 1092 bands amplified showed variations, consisting of the deletion of nine fragments from C genome and the gain of one new fragment. By MSAP approach, three loci with cytosine methylation changes were founded on A genome of S0 plants of B cross, which accounted for 1.37% of loci detected. In addition, a plant with flower color mutation in S0 generation of B cross was observed; we speculated that the flower color mutation was probably caused by genetic changes on C genome. This study provided theoretical informations for innovation of rapeseed germplasm by resynthesizing Brassica napus.

Key words: Artificially synthesized Brassica napus, Genomic sequence variation, AFLP, MSAP

[1]Allard R W, Garcia P, Saenz-de-miera L E, Pérez de la Vega M. Evolution of multilocus genetic structure in Avena-Hirtula and Avena-Barbata. Genetics, 1993, 135: 1125–1139



[2]Cui L, Wall P K, Leebens-Mack J H, Lindsay B G, Soltis D E, Doyle J J, Soltis P S, Carlson J E, Arumuganathan K, Barakat A, Albert V A, Ma H, dePamphilis C W. Widespread genome duplications throughout the history of ?owering plants. Genome Res, 2006, 16: 738–749



[3]Kenton A, Parokonny A S, Gleba Y Y, Bennett M D. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Genet Genom, 1993, 240: 159–169



[4]Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modi?cation in nucleolar dominance. Genes Dev, 1997, 11: 2124–2136



[5]Attia T, Robbelen G. Cytogentic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Genet Cytol, 1986, 28: 323–329



[6]Shaked H, Kashkush K, Ozkan H. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 1749–1759



[7]Wang J, Tian L, Madlung A, Lee H S, Chen M, Lee J J, Watson B, Kagochi T, Comai L. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics, 2004, 167: 1961–1973



[8]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allot etraploid. Genetics, 2002, 160: 1651–1659



[9]Chen Z J, Ni Z F. Mechanisms of genomic rearrangements and gene expression changs in plant polyoids. BioEssays, 2006, 28: 240–252



[10]Ma X F, Fang P, Gustafson J P. Polyploidization-induced genome variation in Triticale. Genome, 2004, 47: 839–848



[11]Reyna-Lopez G E, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphictransition of fungi by amplification of restriction polymorphisms. Mol Gen Genet ,1997, 253:703–710



[12]Xu M, Li X, Korban S S. AFLP-based detection of DNA methylation. Plant Mol Biol Rep, 2000, 18: 361–368



[13]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genet, 2002, 268: 543–552



[14]Bardini M, Labra M, Winfield M, Sala F. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tiss Org, 2003, 72: 157–162



[15]Zhang X L, Ge X H, Shao Y J, Sun G L, Li Z Y. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PloS One, 2013, 8: 1–10



[16]McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucl Acid Res, 1994, 22: 3640–3659



[17]Fu G(富贵), Zhao Z-G(赵志刚), Du D-Z(杜德志). Large seed resynthesized Brassica napus from hybrid of Brassica rapa and Brassica oleracea var alboglabra. Chin J Oil Crop Sci (中国油料作物学报), 2012 , 34(2): 136–141 (in Chinese with English abstract)



[18]Saghai-Maroof M A, Soliman K M, Jorgenson R. Ribosomal DNA spacer-lengthpolymorphisms in barley: mendelian inheritance, chromosomal location and populaion dynamics. Proc Natl Acad Sci, 1984, 81: 8014–8018



[19]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23: 4407–4414



[20]Xiong L Z, Xu C G, Saghai Maroof M A, Zhang Q F. Patterns of cytosine methylation pattern in an elite rice hybrid and its parental lines detected by a methylation polymorphism technique. Mol Gen Genet, 1999, 261: 139–446



[21]Xu Y, Zhong L, Wu X, Fang X, Wang J B. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 2009, 229: 471–483



[22]Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141



[23]Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genom, 2002, 3: 489–505



[24]Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol, 2003, 29: 365–379



[25]Lukens L, Quijada P A, Udall J, Pires J C, Schranz M E, Osborn T. Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc, 2004, 82: 675–688



[26]Song K, Lu P, Tang K, Osborn T. Rapid genomic change in synthetic polyploids of Brassica and its implication for polyploid evolution. Proc Natl Acad Sci, 1995, 92: 7719–7723



[27]Tu Y Q, Sun J, Ge X H, Li Z Y. Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot, 2009, 103: 1039–1048



[28]Shan X H, Liu Z L, Dong Z Y, Wang Y M, Chen Y, Lin X Y, Long L K, Han F P, Dong Y S, Liu B. Mobilization of the active mite trans-posons mPing and Pong in rice by introgression from wild rice (Zizanialatifolia Griseb.). Mol Biol Evol, 2005, 22: 976–990



[29]Ozkan H, Levy A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735–1747



[30]Gaeta R T, Pires J C, Iniguez-Luy F, Leon E, Osborn T C. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell, 2007, 19: 3403–3417



[31]Gaeta R T, Pires J C. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol, 2010, 186: 18–28



[32]Chen L Z H, Lou Q F , Zhuang Y, Chen J F, Zhang X Q, Wolukau J N. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis× hytivus. Planta, 2007, 225: 603–614



[33]Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol, 2000, 43: 387–399



[34]Pires J C, Zhao J, Schranz M E, Leon E J, Quijada A, Lukens L N, Osborn T C. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploid (Brassicacae). Biol J Linnean Soc, 2004, 82: 675–688



[35]Schranz M E, Osborn T C. De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am J Bot, 2004, 91: 174–183

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[3] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[4] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[5] 昝逢刚,吴才文,陈学宽,赵培方,赵俊,刘家勇*. 118份甘蔗种质资源遗传多样性的AFLP分析[J]. 作物学报, 2014, 40(10): 1877-1883.
[6] 逯晓萍,刘丹丹,王树彦,米福贵,韩平安,吕二锁. 高丹草遗传效应与杂种表现预测模型[J]. 作物学报, 2014, 40(03): 466-475.
[7] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
[8] 李锁平,张大乐,王秀娥,亓增军,刘大钧. 节节麦和黑麦杂种F1及双二倍体中基因组变异分析[J]. 作物学报, 2012, 38(06): 996-1002.
[9] 陈荣平, 刘磊, 万秀清, 邱恩建, 王春军, 宋宝刚, 颜培强, 杨铁钊. TMV侵染烟草基因差异表达的cDNA-AFLP分析[J]. 作物学报, 2012, 38(01): 62-70.
[10] 李宁, 黄茜, 刘燕, 赵丹, 刘艳, 黄占景, 张增艳. 小麦抗病基因类似序列BRG1的分离与功能分析[J]. 作物学报, 2011, 37(06): 998-1004.
[11] 李明. 亚麻种质资源遗传多样性与亲缘关系的AFLP分析[J]. 作物学报, 2011, 37(04): 635-640.
[12] 王栋,张志娥,陈晓玲,辛霞,辛萍萍,卢新雄. AFLP标记分析生活力影响大豆中黄18种质遗传完整性[J]. 作物学报, 2010, 36(4): 555-564.
[13] 张岗,董艳玲,夏宁,张毅,王晓杰,屈志鹏,李依民,黄丽丽,康振生. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J]. 作物学报, 2010, 36(3): 401-409.
[14] 刘新龙,毛钧,陆鑫,马丽,Karen Sarah AITKEN,Phillip Andrew JACKSON,蔡青,范源洪. 甘蔗SSR和AFLP分子遗传连锁图谱构建[J]. 作物学报, 2010, 36(1): 177-183.
[15] 韩利涛,姜伟,杨守萍,喻德跃,盖钧镒. 大豆细胞质雄性不育系MADS-box基因的分离分析[J]. 作物学报, 2010, 36(06): 905-910.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!