欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1223-1230.doi: 10.3724/SP.J.1006.2013.01223

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻类病斑突变体spl31的遗传分析与基因定位

代高猛,朱小燕,李云峰,凌英华,赵芳明,杨正林,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室, 重庆 400716
  • 收稿日期:2012-11-16 修回日期:2013-01-15 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 何光华,E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2011BAD35B02-05)和重庆市攻关项目(cstc2012ggC80002,cstc2010AA1019)资助。

Genetic Analysis and Fine Mapping of a Lesion Mimic Mutant spl31 in Rice

DAI Gao-Meng,ZHU Xiao-Yan,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming,YANG Zheng-Lin,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China
  • Received:2012-11-16 Revised:2013-01-15 Published:2013-07-12 Published online:2013-04-23
  • Contact: 何光华,E-mail: hegh@swu.edu.cn

摘要:

利用EMS诱变水稻籼型恢复系缙恢10, 从其后代中鉴定出一个类病斑突变体spl31, 该突变体三叶期以前表型正常, 四叶期后叶片陆续出现黄色斑点, 随着植株的生长, 面积逐渐扩大成边缘黄褐色的病斑, 至成熟时病斑相互连接成片, 导致叶片坏死。透射电镜结果显示突变体细胞的叶绿体基粒片层堆叠不规则。组织化学分析显示突变体细胞被染成深蓝色, 呈离散状分布, 说明spl31病斑是自发形成的。光合数据显示spl31基因突变对病斑叶片正常部位细胞的光系统II影响较小。农艺性状分析发现突变体千粒重下降、结实率降低。遗传分析表明, spl31的突变性状由1对隐性核基因控制, 该基因被定位于水稻第12染色体着丝粒附近, 引物ID104ID11之间, 物理距离为383 kb, 并与标记ID105共分离。

关键词: 水稻(Oryza sativa L.), 类病斑突变, 程序性细胞死亡, 基因定位

Abstract:

A lesion mimic mutant temporarily designated as spl31 was discovered in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by ethyl methane sulfonate (EMS). The mutant phenotype was normal before the three leaf period but with yellow bad spots onleaves after the four leaf period. Along with the growth and development of the plant, the number of spots didn’t show significant difference, whereas the lesion area gradually enlarged and developed with tawny margin. As the spl31 matured, lesion spots interconnected between each other becoming a continuous piece, resulting in leaves’ death. The observation by transmission electronic microscope (TEM) demonstrated that most grana lamellae in spl31’s chroloplasts were irregularly stacked. Histochemical analysis revealed that deep blue stained cells presented discrete dietilution, illustrating that the lesion mechanism of spl31 may be spontaneously generated. The photosynthetic data showed that the mutation of spl31 had no effect onPSII. Furthermore, both 1000-grain weight and seed setting rate of the mutant decreased as compared with the wild type. Genetic analysis suggested that spl31 was controlled by a single nuclear recessive gene. Nipponbare was crossed with the spl31 and 621 mutational F2 recessive plants were used for gene mapping. And finally, Spl31 locus was mapped on chromosome 12 near the centromere between ID104 and ID11 with physical distance of 383 kb and co-segregated with ID105.

Key words: Oryza sativa L., Lesion mimic mutants, Programmed cell death, Gene mapping

[1]Huang Q-N(黄奇娜), Yang Y(杨杨), Shi Y-F(施勇烽), Chen J(陈洁), Wu J-L(吴建利). Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2010, 24(2): 108–115 (in Chinese with English abstract)



[2]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619



[3]Zhong C Y, Jun C, Li R Z, Mei L G, Hei L, Gurdev S, Khush, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876



[4]Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694



[5]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705



[6]Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the LIS1 gene of maize. Cell, 1997, 89: 25–31



[7]Badigannavar A M, Kale D M, Eapen S, Murty G S S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50–52



[8]Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535



[9]Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a u-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808



[10]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirohiko H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860



[11]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μl (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 184: 566–573



[12]Balagué C, Lin B Q, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379



[13]Jabs T, Dietrich R A, Dang J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996, 273: 1853–1856



[14]Mittler R, Rizhsky L. Transgene-induced lesion mimic. Plant Mol Biol, 2000, 44: 335–344



[15]Jambunathan N, Siani J M, McNellis T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell, 2001, 13: 2225–2240



[16]He R-F(何瑞峰), Ding Y(丁毅), Yu J-H(余金洪), Zu M-S(祖明生). Study on leaf ultrastructure of the thermo-sensitive chlorophy11 deficient mutant in rice. Plant Sci J (武汉植物学研究), 2001, 19(1): 1–5 (in Chinese with English abstract)



[17]Bowling S A, Clarke J D, Liu Y, Klessig D F, Dong X N. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 1997, 9: 1573–1584



[18]Lü D-H(吕典华), Zong X-F(宗学凤), Wang S-G(王三根), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin (作物学报), 2009, 35(12): 2304–2308 (in Chinese with English abstract)



[19]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5(2): 69–76



[20]Sang X-C(桑贤春), He G-H(何光华), Yang X-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)



[21]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mol Genet Genomics, 1996, 252: 597–607



[22]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[23]Liu G, Wang L, Zhou Z, Leung H, Wang G L, He C. Physical mapping of a rice lesion mimic gene, Spl1, to a 70-kb segment of rice chromosome 12. Mol Genet Genomics, 2004, 272: 108–115



[24]Li X-L(李秀兰), Wang P-R(王平荣), Qu Z-C(曲志才), Sun X-Q(孙小秋), Wang B(王兵), Deng X-J(邓晓建). Genetic analysis and fine mapping of a lesion mimic mutant C23 in rice. Sci Agric Sin (中国农业科学), 2010, 43(18): 3691–3697 (in Chinese with English abstract)



[25]Yang X-H(杨绍华), Liu H-Q(刘华清), Wang F(王锋). Genetic analysis and gene mapping of a spotted leaf mutnat W1764 in rice. Fujian J Agric Sci (福建农业学报), 2011, 26(4): 519–522 (in Chinese with English abstract)



[26]Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 2005, 18: 375–384



[27]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Ptila negatively regulates RAR1-dependent defense responses. Plant Cell, 2007, 19: 2940–2951



[28]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949



[29]Chen P-P(陈萍萍), Ye S-H(叶胜海), Zhao N-C(赵宁春), Lu Y-T(陆艳婷), Liu H-Q(刘合芹), Yang L(杨玲), Jin Q-S(金庆生), Zheng X-M(张小明). Characteristics and genetic mapping of a lesion mimic mutant spl(t) in Japonica rice variety Zhejing 22. J Nucl Agric Sci (核农学报), 2010, 24(1): 1–6 (in Chinese with English abstract)



[30]Wu C(吴超), Fu Y-P(付亚萍), Hu G-C(胡国成), Si H-M(斯华敏), Liu X-R(刘旭日), Sun Z-X(孙宗修), Cheng S-H(程式华), Liu W-Z(刘文真). Identification and fine mapping of a spotted and yellow leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(3): 256–260 (in Chinese with English abstract)



[31]Kim J, Cho K, Singh R, Jung Y, Jeong S, Kim S, Lee J, Cho Y, Agrawal G, Rakwal R, Tamogami S, Kersten B, Jeon J, An G, Jwa N. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431–439



[32]Shen X L, Liu H B, Yuan B, Li X G, Xu C G, Wang S P. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ, 2011, 34: 179–191



[33]Tadashi F, Sylvie M, Masayuki I, Masaharu M, Letian C, Hann L W, Tsutomu K, Ko S, Sekiguchi. Lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313



[34]Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Am Phytopathol Soc, 2005, 18: 511–520



[35]Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37



[36]Zhang J-H(张建辉), Li X-Y(李小艳), Lin D-Z(林冬枝), Dong Y-J(董彦君), Teng S(滕胜). Identification and molecular mapping of a novel lesion mimic mutant in rice (Oryza sativa). Genomics Appl Biol (基因组学与应用生物学), 2011, 30(online only, No.44): 1284–1289. DOI: 10.5376/gab.cn.2011.30.0044 (in Chinese with English abstract)



[37]Ma J-Y(马健阳), Chen S-L(陈孙禄), Zhang J-H(张建辉), Dong Y-J(董彦君), Teng S(滕胜). Identification and genetic mapping of lesion mimic stripe mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(2): 150–156 (in Chinese with English abstract)



[38]Feng B-H(奉保华), Yang Y(杨杨), Shi Y-F(施勇烽), Lin L(林璐), Chen J(陈洁), Huang Q-N(黄奇娜), Wei Y-L(魏彦林), Leung H, Wu J-L(吴建利). Genetic analysis and gene mapping of a light brown spotted leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2012, 26(3): 297–301 (in Chinese with English abstract) 



[39]Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol, 1997, 35: 49–60



[40]Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!