作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1386-1390.doi: 10.3724/SP.J.1006.2013.01386
董剑,杨华,赵万春*,李晓燕,陈其皎,高翔
DONG Jian,YANG Hua,ZHAO Wan-Chun*,LI Xiao-Yan,CHEN Qi-Jiao,GAO Xiang
摘要:
[1]Blanco A, Simeone R, Resta P. The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theor Appl Genet, 1987, 74: 328–333[2]Chen J(陈静), Deng G-B(邓光兵), Yu M-Q(余懋群), Ren Z-L(任正隆). Study on the resistance genetic and cytogenetic behaviour of 6VS in a wheat- Dasypyrum villosum telosomic addition line. J Sichuan Agric Univ (四川农业大学学报), 2001, 19(1): 1–5 (in Chinese with English abstract)[3]Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128[3]Chen Q, Conner R L, Li H, Laroche A, Graf R J, Kuzyk A D. Expression of resistance to stripe rust, powdery mildew and the wheat curl mite in Triticum aestivum–Haynaldia villosa lines. Can J Plant Sci, 2002, 82: 451–456[4]Liu D J, Chen P D, Pei G Z, Wang Y N, Qiu B X, Wang S L. Transfer of Haynaldia villosa chromosomes into Triticum aestivum . In: Miller T E, Koebner R M D, eds. Proceedings of the 7th International Wheat Genetic Symposium, Cambridge, England, 1988, 1: 355–361[5]Li H J, Conner R L, Chen Q, Jia X, Li H, Graf R J, Laroche A, Kuzyk A D. Different reactions to the wheat curl mite and wheat streak mosaic virus in various wheat-Haynaldia villosa 6V and 6VS lines. Plant Dis, 2002, 86: 423–428[6]Yildirim A, Jones S S, Murray T D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41: 1–6[7]Zhang Q P, Li Q, Wang X E, Wang H Y, Lang S P, Wang Y N, Wang S L, Chen P D, Liu D J. Development and characterization of a Triticum aestivum–Haynaldia villosa translocation line T4VS•4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145: 317–320[8]Linde-Laursen I, Jensen H P, Jorgensen J H. Resistance of Triticeae, Aegilops and Haynaldia species to the Take-all fungus, Gaeumannomyces graminis. Zeitschrift fur Pflanzenzuchtung, 1973, 70: 200–213[9]Blanco A, Simeone R, Tanzarella O A. Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theor Appl Genet, 1983, 64: 333–337[10]Zhong G Y, Dvorák J. Evidence for common genetic mechanisms controlling the tolerance of sudden salt stress in the tribe Triticeae. Plant Breed, 1995, 114: 297–302[11]Schlegel R, Cakmak I, Torun B, Eker S, Tolay I, Ekiz H, Kalayci M, Braun H J. Screening for zinc efficiency among wheat relatives and their utilization for alien gene transfer. Euphytica, 1998, 100: 281–286[12]Mohammad P, Hossain M A, Khan F, Aguja S E. Leaf blight disease tolerance/resistance in diploid relatives of wheat. Sarhad J Agric, 1999, 15: 311–316[13]De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella O A, Qualset C O, Scarascia Mugnozza G T. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica, 2001, 117: 67–75[14]Gradzielewska A. The genus Dasypyrum: 1. The taxonomy and relationships within Dasypyrum and with Triticeae species. Euphytica, 2006, 152: 429–440[15]Gradzielewska A. The genus Dasypyrum: 2. Dasypyrum villosum—a wild species used in wheat improvement. Euphytica, 2006, 152: 441–454[16]Shewry P R, Parmar S, Pappin D J C. Characterization and genetic control of the prolamins of Haynaldia villosa:relationship to cultivated species of the Triticeae (rye, wheat and barley). Biochem Genet, 1987, 25: 309–325[17]Zhong G Y, Qualset C O. Allelic diversity of highmolecular-weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1993, 86: 851–858[18]Zhang R-Q(张瑞奇). Chromosome Location of Genes for Hardness Locus and Storage Proteins in H. villosa and Creation the Translocation Lines. PhD Dissertation of Nanjing, Nanjing Agricultural University, 2010 (in Chinese with English abstract)[19]AACC Approved Methods of the American Association of Cereal Chemists, 9th edn. AACC, St. Paul, 1995[20]Montebove L, De Pace C, Jan C C, Scarascia Mugnozza G T, Qualset C O. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1987, 73: 836–845[21]Zhao W C, Qi L L, Gao X, Zhang G S, Dong J, Chen Q J, Friebe B, Gill B S. Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS?1V#3L and T1DL?1V#3S and their effect on grain quality. Euphytica, 2010, 175: 343–350[22]Payne P I, Law C N, Mudd E E. Control by homologous group I chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet, 1980, 58: 113–120[23]Payne P I, lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1,Glu-B1 and Glu-D1 which code high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983, 11: 29–35[24]Payne P I, Holt L M, Reader S M, Miller T E. Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two dimensional electorphoresis of wheat–H. chilense chromosome addition lines. Biochem Genet, 1987, 25: 53–65[25]Liu G-T(刘广田), Xu M-H(许明辉). The inheritance of endosperm glutenin subunit in common wheat (Triticum aestivum L.) variation in cultivars and inheritance in F1 of HMW glutenin subunit. Sci Agric Sin (中国农业科学), 1988, 21(1): 56–60 (in Chinese with English abstract)[26]Halford N G, Field J M, Blair H. Analysis of HMW-GS encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet, 1992, 83: 373–378 |
[1] | 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833. |
[2] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[3] | 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390. |
[4] | 段亚梅, 罗贤磊, 陈士强, 高勇, 陈建民, 戴毅. 硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制[J]. 作物学报, 2021, 47(7): 1402-1414. |
[5] | 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913. |
[6] | 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749. |
[7] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
[8] | 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545. |
[9] | 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681. |
[10] | 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663. |
[11] | 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502. |
[12] | 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866. |
[13] | 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447. |
[14] | 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458. |
[15] | 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671. |
|