欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1402-1414.doi: 10.3724/SP.J.1006.2021.01072

• 研究简报 • 上一篇    

硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制

段亚梅1,2, 罗贤磊2, 陈士强3, 高勇2, 陈建民1,2,*(), 戴毅1,*()   

  1. 1扬州大学农业科技发展研究院 / 教育部农业与农产品安全国际联合实验室, 江苏扬州 225009
    2扬州大学生物科学与技术学院 / 江苏高校现代谷物生产协作中心, 江苏扬州 225009
    3江苏省里下河地区农业科学研究所, 江苏扬州 225009
  • 收稿日期:2020-09-04 接受日期:2020-12-02 出版日期:2021-07-12 网络出版日期:2020-12-28
  • 通讯作者: 陈建民,戴毅
  • 作者简介:E-mail: 834630650@qq.com
  • 基金资助:
    本研究由江苏省自然科学基金项目(BK20180908);本研究由江苏省自然科学基金项目(BK20181213);扬州市自然科学基金项目资助(YZ2018097)

Creation of disomic addition, substitution and translocation lines of durum wheat-Thinopyrum elongatum

DUAN Ya-Mei1,2, LUO Xian-Lei2, CHEN Shi-Qiang3, GAO Yong2, CHEN Jian-Min1,2,*(), DAI Yi1,*()   

  1. 1Institute of Agricultural Science and Technology Development / Joint International Research Laboratory of Agriculture & Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, Jiangsu, China;
    2College of Bioscience and Biotechnology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Institute of Agricultural Sciences, Lixia River Region, Yangzhou 225009, Jiangsu, China
  • Received:2020-09-04 Accepted:2020-12-02 Published:2021-07-12 Published online:2020-12-28
  • Contact: CHEN Jian-Min,DAI Yi
  • Supported by:
    This research was supported by the Natural Science Foundation of Jiangsu(BK20180908);This research was supported by the Natural Science Foundation of Jiangsu(BK20181213);the Natural Science Foundation of Yangzhou(YZ2018097)

摘要:

通过小麦与长穗偃麦草远缘杂交创制附加系、代换系及易位系是小麦遗传改良中利用长穗偃麦草优良基因的重要途径。本研究将长穗偃麦草特异分子标记、染色体计数、基因组原位杂交(GISH)及非变性原位杂交(ND-FISH)等多种方法相结合, 对硬粒小麦Langdon (AABB)与小偃麦8801 (AABBEE)的杂交后代群体进行分子细胞学鉴定, 创制出硬粒小麦-长穗偃麦草3E、6E染色体双体附加系Du-DA3E和Du-DA6E, 硬粒小麦-长穗偃麦草1E (1B)染色体双体代换系Du-DS1E (1B)以及硬粒小麦-长穗偃麦草1AS-1EL染色体易位系Du-T1AS·1EL。创制的4个种质中长穗偃麦草染色体均能稳定遗传, 这不仅增加了硬粒小麦-长穗偃麦草附加系和代换系的类型, 还为后续利用长穂偃麦草优良基因改良小麦提供了特殊种质资源。

关键词: 硬粒小麦, 长穗偃麦草, 附加系, 代换系, 易位系

Abstract:

The establishment of chromosome addition, substitution and translocation lines through distant hybridization between wheat and Thinopyrum elongatum is an important approach to utilize useful genes of Th. elongatum in wheat improvement. Based on chromosome-specific molecular markers, chromosome counting, genome in situ hybridization (GISH), and non-denaturing fluorescence in situ hybridization (ND-FISH), several stable addition, substitution or translocation lines were identified from a cross between Triticum turgidum ssp. durum Langdon (AABB) and Trititrigia 8801 (AABBEE). Two 3E and 6E disomic addition lines Du-DA3E and Du-DA6E of durum wheat-Th. elongatum, a 1E (1B) disomic substitution line Du-DS1E (1B), and a 1AS-1EL disomic translocation line Du-T1AS·1EL were created in this study. The chromosome-segments of Th. elongatum could be inherited stably in these new lines, which not only increased the types of addition and substitution lines of durum wheat-Th. elongatum, but also provided special germplasm resources for the follow-up use of excellent genes of Th. elongatum in wheat improvement.

Key words: Triticum turgidum, Thinopyrum elongatum, addition line, substitution line, translocation line

表1

本研究所用的植物材料"

材料名称
Material name
染色体数
Chromosome number
染色体组成
Chromosome composition
缩写
Abbreviations
硬粒小麦(Langdon)
Triticum turgidum ssp. durum (Langdon)
2n=28 AABB Ld
六倍体小偃麦8801
Hexaploid Trititrigia
2n=28+14=42 AABBEE 8801
二倍体长穗偃麦草
Diploid Th. elongatum
2n=14 EeEe 2X
四倍体长穗偃麦草
Tetraploid Th. elongatum
2n=28 Ee1Ee1Ee2Ee2 4X
普通小麦中国春
Common wheat Chinese spring
2n=42 AABBDD CS
中国春-长穗偃麦草1E-7E附加系
Chinese spring-Th. elongatum 1E-7E addition lines
2n=44 AABBDD+II1E-7E DA1E~7E
中国春-长穂偃麦草1EL端体附加系
Chinese spring-Th. elongatum 1EL telosomic addition line
2n=44 AABBDD+II1EL DA1EL
中国春-长穂偃麦草1ES端体附加系
Chinese spring-Th. elongatum 1ES telosomic addition line
2n=44 AABBDD+II1ES DA1ES
硬粒小麦-长穗偃麦草1E(1B)代换系
Durum wheat-Th. elongatum 1E(1B) substitution line
2n=26+2=28 AABB+II1E(1B) Du-DS1E(1B)
硬粒小麦-长穗偃麦草3E附加系
Durum wheat-Th. elongatum 3E addition line
2n=28+2=30 AABB+II3E Du-DA3E
硬粒小麦-长穗偃麦草6E附加系
Durum wheat-Th. elongatum 6E addition line
2n=28+2=30 AABB+II6E Du-DA6E
硬粒小麦-长穗偃麦草1AS-1EL易位系
Durum wheat-Th. elongatum 1AS-1EL translocation line
2n=26+2T=28 AABB+ II1AS·1EL Du-T1AS·1EL

表2

长穗偃麦草特异分子标记及序列"

标记名称
Molecular marker
引物序列Primer sequence (5'-3') 扩增染色体
Amplified chromosome
参考文献
Reference
正向Forward 反向Reverse
GSM-1 AATCAGTCATAGTATCCAAAGTCTCCG TGTTTAGAATAGGATGGGTAGAGC 1E-7E This study
GSM-2 TCTTACAGATAGGTCCCTGGCAT TGGTAGTCACCTATCCAAGAAT 1E-7E This study
GSM-3 TGTTTCTTAGTTGTTTTGTT GCCTTGACCACCATAC 1E-7E Chen et al. [37]
CSM-1E-1 GATCTGTTTACGTCGATGCCG TGCCGAACTATTTGCTCCTTG 1E, 1EL This study
CSM-1E-2 TGAGAGGCGTGAGGACCTTGCTAAT GGTTTCCCAAGTCTTGTGATGC 1E, 1ES This study
CSM-1E-3 AGGTTCATAAGAATCCATC TACTGGATTTGTCACTTGCT 1E, 1EL This study
CSM-1E-4 ATGTCAGCCTATCCTACGGGTGT ATTCGTTGGGTCACTTGTCTCCT 1E, 1ES This study
CSM-1E-5 TCCCAACCACCTTCGCATTCATT GGCGAAAGACCATCAAAAGGAGTG 1E, 1EL This study
CSM-1E-6 CGTCACCAGAGAATAACAGGAG GTTCTATGTCAAGCAGTTCCG 1E, 1EL This study
CSM-1E-7 CCCGTGTAAGGAACAGAAAC TTAAGGTCGTCCCAACAGG 1E, 1EL This study
CSM-2E-1 TCAATGTCAAGGAGGAGGGTC TGGTCAAGAAGACAAGGGAAG 2E This study
CSM-3E-1 TATTAGTCGAGCACCTGTCG ATCTTCCTTGGCATCCTTC 3E This study
CSM-3E-2 CTGAGGGTTTAATTCGTAGCG TGATGGTTTCCCACTGTTCC 3E This study
CSM-3E-3 AGAGGATTTGAGGCTGTTCG AGATGTGCCGTGTAAAGGAGT 3E This study
CSM-3E-4 TGATGAGTCGAGCAAACAACC ATGTCCCTAAAGCCAAGTCC 3E This study
CSM-3E-5 TACTCCATAGAGGCTAGAAGAAC TGTCAAAGGCAAGCAAAGC 3E This study
CSM-4E-1 GAGAAGCCTCTGCCTTTAAG ACGGCGAGTCCTTGGTC 4E Luo et al. [38]
CSM-5E-1 ACCATTAGGTCACCGCAGTCT CGTTCTCGTGTCCCTACTCTTGT 5E This study
CSM-6E-1 GAGTGCTGGGATGAAGAAG GACGAAGACTAGGCACCAG 6E This study
CSM-6E-2 GCTAATGAGGGTTACAGAGT TAAAGAGCATCGGGGAC 6E This study
CSM-6E-3 AGCTGGCTCATCCCCATTTCT CGTGTTTACTGCCCATTTGTCC 6E This study
CSM-6E-4 TTTTTCGCACCACCCTTTC TTGTTCGAGAACGGGTTGC 6E Luo et al. [38]
CSM-6E-5 ACGAGGTTTGGCCGGTAT TACTCTTTGCTGATGATAGGCTC 6E Luo et al. [38]
CSM-7E-1 CTGCGGTTCTAAAATACTGAGG AAAGCTTGCCAAATGCC 7E This study

图1

长穗偃麦草基因组特异标记对8801×Langdon的F2代(a)和F4代(b)单株的扩增 a1~a3: F2 代的标记扩增。M: DL2501 marker; 1~22: F2代植株; 23: Ld; 24: 4X; 25: 8801。a1: 标记GSM-1; a2: 标记GSM-2; a3: 标记GSM-3. b1~b4: F4 代的标记GSM-3扩增. M: DL2501 marker; 1~13: F4代单株; b1: 株系Du_No.1; b2: 株系Du_No.3; b3: 株系Du_No.6; b4: 株系Du_No.8; 14: Ld; 15: 4X; 16: 8801。"

表3

长穗偃麦草染色体特异分子标记扩增结果"

标记名称
Molecular marker
扩增染色体
Amplified chromosome
Du_No.1 Du_No.3 Du_No.6 Du_No.8
CSM-1E-1 1E, 1EL + - - +
CSM-2E-1 2E - - - -
CSM-3E-1 3E - + - -
CSM-4E-1 4E - - - -
CSM-5E-1 5E - - - -
CSM-6E-1 6E - - + -
CSM-7E-1 7E - - - -
CSM-1E-2 1E, 1ES + * * -
CSM-1E-3 1E, 1EL + * * +
CSM-1E-4 1E, 1ES + * * -
CSM-1E-5 1E, 1EL + * * +
CSM-1E-6 1E, 1EL + * * +
CSM-1E-7 1E, 1EL + * * +
CSM-3E-2 3E * + * *
CSM-3E-3 3E * + * *
CSM-3E-4 3E * + * *
CSM-3E-5 3E * + * *
CSM-6E-2 6E * * + *
CSM-6E-3 6E * * + *
CSM-6E-4 6E * * + *
CSM-6E-5 6E * * + *

图2

长穗偃麦草染色体特异分子标记对8801×Langdon 的F5代单株的扩增 M: DL2501 marker; a: 株系Du_No.1, 标记为CSM-1E-1; b: 株系Du_No.3, 标记为 CSM-3E-1; c: 株系Du_No.6, 标记为CSM-6E-4; d: 株系Du_No.8, 标记为CSM-1E-1; 1: Ld; 2: CS; 3: 4X; 4: 8801; 5~14: 各株系的不同单株。"

图3

长穗偃麦草1EL、1ES染色体臂分子标记对株系Du_No.8的扩增 M: DL2501 marker; a: 1E长臂(1EL)标记CSM-1E-3; b: 1E短臂(1ES)标记 CSM-1E-4; 1: Ld; 2: CS; 3: 4X; 4: 8801。5~9: 随机选取的单株。"

图4

F4代4个株系植株的根尖有丝分裂中期染色体 a: 株系Du_No.1, 2n=28; b: 株系Du_No.3, 2n=30; c: 株系Du_No.6, 2n=30; d: 株系Du_No.8, 2n=28。"

图5

4个株系的根尖细胞染色体原位杂交结果 a1: 株系Du_No.3 GISH; a2: 同一分裂相的ND-FISH; a3: a2图中E染色体; a4: 8801的3E染色体。b1: 株系Du_No.6 GISH; b2: 同一分裂相的ND-FISH; b3: b2图中E染色体; b4: 8801的6E染色体。c1: 株系Du_No.1 GISH; c2: 同一分裂相的ND-FISH; c3: c2图中E染色体; c4: 8801的1E染色体; c5: 8801的1B染色体。d1: 株系Du_No.8 GISH; d2: 同一分裂相的ND-FISH; d3: d2图中E染色体; d4: 8801的1E染色体; d5: 8801的1A染色体。GISH中绿色信号为长穗偃麦草染色体, ND-FISH中箭头所指为长穗偃麦草染色体。标尺为10 μm。"

表4

硬粒小麦-长穗偃麦草附加系、代换系等及其亲本的农艺性状"

材料
Materials
调查株数
Number of plants
株高
Plant height
(cm)
穗长
Spike length
(cm)
小穗粒数
Kernel number per spikelet
每穗小穗数
Spikelet number per spike
每穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
旗叶面积
Flag leaf area (cm2)
Langdon 22 169.8±10.4 d 9.7±1.0 ab 2.3±0.2 bc 24.7±1.9 bc 56.1±7.3 c 37.2±1.4 d 30.6±4.7 a
8801 18 178.6±13.3 d 18.4±1.6 e 2.1±0.3 ab 20.9±2.7 a 43.6±4.5 ab 18.0±3.1 a 47.4±8.8 bc
Du-DA3E 10 95.1±15.1 a 9.3±0.5 a 2.6±0.4 c 21.0±2.5 a 53.9±7.7 bc 25.2±4.9 b 42.3±13.9 b
Du-DA6E 10 117.1±10.3 b 12.8±0.9 d 3.5±0.3 d 26.4±2.5 c 93.1±10.0 d 30.7±3.1 c 57.2±8.0 c
Du-DS1E (1B) 10 109.1±11.8 b 12.0±2.0 cd 1.8±0.6 a 23.7±2.1 b 42.2±16.9 a 20.1±3.3 a 48.1±9.6 bc
Du-T1AS·1EL 12 134.8±7.7 c 10.7±0.8 bc 2.5±0.4 bc 23.6±1.4 b 58.9±9.9 c 22.5±2.6 ab 54.1±4.2 c

图6

硬粒小麦-长穗偃麦草附加系、代换系和易位系的种子及穗部形态 A, a: Langdon; B, b: 8801; C, c: 附加系Du-DA3E; D, d: 附加系Du-DA6E; E, e: 代换系Du-DS1E(1B); F, f: 易位系Du-T1AS·1EL。标尺为10 mm。"

附图1

基于中国春-长穂偃麦草附加系中的扩增结果选择染色体特异分子标记 M: DL2501 marker; 1~7: 中国春-长穗偃麦草1E-7E附加系; 8: Th. elongatum (2x); 9: Ld; 10: CS; 11: 8801。标记依次为: CSM-1E-1, CSM-2E-1, CSM-3E-5, CSM-4E-1, CSM-5E-1, CSM-6E-2, CSM-7E-1, GSM-2。"

附图2

1E染色体特异分子标记在中国春-长穂偃麦草1E端体附加系中的扩增结果 M: DL2501 marker; a: 标记CSM-1E-3, 扩增1E长臂(1EL); b: 标记CSM-1E-4, 扩增1E短臂(1ES)。1: 中国春-长穂偃麦草1E附加系(DA1E); 2: 中国春-长穂偃麦草1EL端体附加系(DA1EL); 3: 中国春-长穂偃麦草1ES端体附加系(DA1ES); 4: 长穂偃麦草(2x); 5: Ld。"

[1] 赵鹏, 秦明波. 植物染色体工程与育种. 生物学通报, 1996, 31(7): 4‒7.
Zhao P, Qin M B. Plant chromosome engineering and breeding. Bull Biol, 1996,31(7):4-7 (in Chinese).
[2] 王林生, 陈佩度. 普通小麦外源染色体易位系的诱导及其在育种上的应用. 生物学通报, 2007,42(2):9-11.
Wang L S, Chen P D. Induction of aline chromosome translocation lines in common wheat and its application in breeding. Bull Biol, 2007,42(2):9-11 (in Chinese).
[3] 刘大钧, 陈佩度, 吴沛良, 王耀南, 邱伯行, 王苏玲. 硬粒小麦-簇毛麦双二倍体. 作物学报, 1986,12:155-162.
Liu D J, Chen P D, Wu P L, Wang Y N, Qiu B X, Wang S L. Durum wheat- Dasypyrum villosum diploid. Acta Agron Sin, 1986,12:155-162 (in Chinese with English abstract).
[4] 韩方普, 李集临. 硬粒小麦、提莫菲维小麦与四倍体长穗偃麦草属间杂种的形态和细胞遗传学研究. 遗传学报, 1993,20:44-49.
Han F P, Li J L. Morphological and cytogenetic studies on hybrids of Triticum turgidum, Triticum timopheevii and tetraploid Thiuopyrum elougatum. Acta Genet Sin, 1993,20:44-49 (in Chinese with English abstract).
[5] Guo X, Shi Q H, Wang J, Hou Y L, Wang Y H, Han F P. Characterization and genome changes of new amphiploids from wheat wide hybridization. J Genet Genom, 2015,42:459-461.
[6] 王洪刚, 刘树兵, 李兴锋, 高居荣, 封德顺, 陈冬花. 六个八倍体小偃麦的选育和鉴定. 麦类作物学报, 2006,26(4):6-10.
Wang H G, Liu S B, Li X F, Gao J R, Feng D S, Chen D H. Breeding and identification of six octoploid Trititrigia. J Triticeae Crops, 2006,26(4):6-10 (in Chinese with English abstract).
[7] 丁志远. 小麦异附加系种质资源的开发利用初探. 甘肃农业科技, 2006, ( 5):15-17.
Ding Z Y. Preliminary study on utilization of alien chromosome addition lines of wheat. Gansu Agric Sci Technol, 2006, ( 5):15-17 (in Chinese with English abstract).
[8] Li X J, Hu X G, Hu T Z, Li G, Ru Z G, Zhang L L, Lang Y M. Identification of a novel wheat- Thinopyrum ponticum addition line revealed with cytology, SSR, EST-SSR, EST-STS and PLUG markers. Cereal Res Commun, 2015,43:1-10.
[9] Liu H P, Dai Y, Chi D, Huang S, Li H F, Duan Y M, Cao W G, Gao Y, Fedak G, Chen J M. Production and molecular cytogenetic characterization of a durum wheat- Thinopyrum elongatum 7E disomic addition line with resistance to Fusarium head blight. Cytogenet Genome Res, 2018,153:165-173.
doi: 10.1159/000486382 pmid: 29421795
[10] 穆素梅, 钟冠昌, 李振声, 李滨. 利用缺体回交法选育小黑麦异代换系的研究. 中国生态农业学报, 1996,4(1):33-36.
Mu S M, Zhong G C, Li Z S, Li B. Study on breeding of different substitution lines of Triticale by backcrossing. Chin J Eco-Agric, 1996,4(1):33-36 (in Chinese with English abstract).
[11] Hu L J, Li G R, Zeng Z X, Chang Z J, Liu C, Zhou J P, Yang Z J. Molecular cytogenetic identification of a new wheat- Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011,177:169-177.
[12] 李桂英, 王琳清, 施巾帼. 辐照花粉对普通小麦×窄颖赖草杂种的细胞学效应. 核农学报, 2000,14:6-11.
Li G Y, Wang L Q, Shi J G. Cytological effects of irradiated pollen on the hybrid of Triticum aestivum × Leymus angustus. Acta Agric Nucl Sin, 2000,14:6-11 (in Chinese with English abstract).
[13] 李洪杰, 郭北海, 张艳敏, 李义文, 杜立群, 李银心, 贾旭, 朱至清. 利用组织培养和辐射诱变创造高频率小麦与簇毛麦染色体易位. 遗传学报, 2000,27:511-519.
Li H J, Guo B H, Zhang Y M, Li Y W, Du L Q, Li Y X, Jia X, Zhu Z Q. Using tissue culture and radiation mutagenesis to create high-frequency chromosomal translocation between Triticum aestivum and Dasypyrum villosum. Acta Genet Sin, 2000,27:511-519 (in Chinese with English abstract).
[14] 张璐璐, 陈士强, 李海凤, 刘慧萍, 戴毅, 高勇, 陈建民. 小麦-长穗偃麦草7E抗赤霉病易位系培育. 中国农业科学, 2016,49:3477-3488.
Zhang L L, Chen S Q, Li H F, Liu H P, Dai Y, Gao Y, Chen J M. Development of Wheat- Thinopyrum elongatum translocation lines resistant to Fusarium head blight. Sci Agric Sin, 2016,49:3477-3488 (in Chinese with English abstract).
[15] Friebe B, Mukai Y, Dhaliwal H S, Martin T J, Gill B S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet, 1991,81:381-389.
doi: 10.1007/BF00228680 pmid: 24221269
[16] Friebe B, Jiang J, Knott D R, Gill B S. Compensation indices of radiation-induced wheat- Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 1994,34:400-404.
[17] Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004,47:215-223.
doi: 10.1139/g03-095 pmid: 15060618
[18] Fu S L, Lyu Z L, Qi B, Guo X, Li J, Liu B, Han F P. Molecular cytogenetic characterization of wheat- Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight. J Genet Genomics, 2012,39:103-110.
[19] He F, Xu J Q, Qi X L, Wang H G. Molecular cytogenetic characterization of two partial wheat Elytrigia elongatum amphiploids resistant to powdery mildew. Plant Breed, 2013,132:553-557.
[20] Zheng Q, Klindworth D L, Friesen T L, Liu A F, Li Z S, Zhong S B, Jin Y, Xu S S. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci, 2014,54:2663-2672.
[21] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li S F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R,. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
doi: 10.1126/science.aba5435 pmid: 32273397
[22] Omielan J A, Epstein E, Dvořák J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome, 1991,34:961-974.
[23] Taeb M, Koebner R M, Forster B P. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome, 1993,36:825-830.
doi: 10.1139/g93-110 pmid: 18470030
[24] 孟林, 杨宏新, 毛培春, 高洪文. 偃麦草属植物种间苗期抗旱性评价. 草业学报, 2011,20(5):34-41.
Meng L, Yang H X, Mao P C, Gao H W. Evaluation of drought resistance of Thinopyrum plants in seedling stage. Acta Pratacult Sin, 2011,20(5):34-41 (in Chinese with English abstract).
[25] 李振声. 创造新物种与改良旧物种—远缘杂交在作物育种中的作用. 中国农业科学, 1977,10(3):38-43.
Li Z S. Creating new species and improving old species-The role of distant hybridization in crop breeding. Sci Agric Sin, 1977,10(3):38-43 (in Chinese).
[26] Wang R R C, Lu B R. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol, 2014,52:697-705.
[27] 刘登才, 郑有良, 王志容, 侯永翠, 兰秀锦, 魏育明. 影响小麦赤霉病抗性的Lophopyrum elongatum染色体定位. 四川农业大学学报, 2001, 19(3): 200‒205.
Liu D C, Zhen Y L, Wang Z R, Huo Y C, Lan X J, Wei Y M. Chromosomal location of Lophopyrum elongatum affecting FHB resistance of wheat. J Sichuan Agric Univ, 2001,19(3):200-205 (in Chinese with English abstract).
[28] Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat ( Triticum aestivum)-Lophopyrum, genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet, 2004,108:808-813.
doi: 10.1007/s00122-003-1492-9 pmid: 14628111
[29] Shen X, Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum, chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed, 2006,125:424-429.
[30] Jauhar P P, Peterson T S. Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line. Plant Genome, 2011,4:102-109.
[31] Jauhar P P, Peterson T S. Registration of DGE-2, a durum wheat disomic alien substitution line 1E(1A) involving a diploid wheatgrass chromosome. J Plant Regist, 2012,6:221-223.
[32] Jauhar P P, Peterson T S. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome. J Plant Regist, 2013,7:257-259.
[33] Anderson J M, Bucholtz D L, Sardesai N, Santini J B, Gyulai G, Williams C E, Goodwin S B. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum × Lophopyrum elongatum disomic substitution lines. Euphytica, 2010,172:251-262.
[34] Dewey D R. Salt tolerance of twenty-five strains of Agropyron. Agron J, 1960,52:631-635.
[35] Zhong G Y, Dvorak J. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L. genomes. Theor Appl Genet, 1995,90:229-236.
doi: 10.1007/BF00222206 pmid: 24173895
[36] 王景雪, 孙毅, 高武军. 一种简便实用的植物总DNA提取方法. 山西大学学报, 2000,23:271-272.
Wang J X, Sun Y, Gao W J,. A simple and practical method for extracting plant total DNA. J Shanxi Univ, 2000, 23: 271‒272 (in Chinese with English abstract).
[37] Chen S Q, Huang Z F, Dai Y, Qin S W, Gao Y Y, Zhang L L, Gao Y, Chen J M. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One, 2013,8:e65122.
[38] 罗贤磊, 戴毅, 陶海霞, 陈士强, 李海凤, 段亚梅, 高勇, 陈建民. 硬粒小麦-长穗偃麦草2E和4E附加系及E染色体传递. 西北植物学报, 2019,39:953-962.
Luo X L, Dai Y, Tao H X, Chen S Q, Li H F, Duan Y M, Gao Y, Chen J M. Durum- Thinopyrum elongatum 2E and 4E addition lines and E chromosome transmission. Acta Bot Boreali-Occident Sin, 2019,39:953-962 (in Chinese with English abstract).
[39] Kato A, Lamb J C, Birchler J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA, 2004,101:13554-13559.
doi: 10.1073/pnas.0403659101 pmid: 15342909
[40] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014,55:313-318.
pmid: 24782110
[41] 顾爱侠, 李雪姣, 冯大领, 王彦华, 陈雪平, 申书兴. 基因组原位杂交中封阻DNA制备方法研究. 河北农业大学学报, 2010,33(5):77-79.
Gu A X, Li X J, Feng D L, Wang Y H, Chen X P, Shen S Z. Preparation of blocking DNA in genomic in situ hybridization. J Agric Univ Hebei, 2010,33(5):77-79 (in Chinese with English abstract).
[42] 侯贤清, 贾志宽, 韩清芳, 王维, 丁瑞霞, 聂俊峰, 李永平. 轮耕对宁南旱区冬小麦花后旗叶光合性能及产量的影响. 中国农业科学, 2011,44:3108-3117.
Hou X Q, Jia Z K, Han Q F, Wang W, Ding R X, Nie J F, Li Y P. Effects of rotational tillage on flag leaf photosynthetic characteristics and yield after anthesis of winter wheat in arid areas of southern Ningxia. Sci Agric Sin, 2011, 44: 3108‒3117 (in Chinese with English abstract).
[43] Li D Y, Li T H, Wu Y L, Zhang X H, Zhu W, Wang Y, Zeng J, Xu L L, Fan X, Sha L, Zhang H Q, Zhou Y H, Kang H Y. FISH-Based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front Plant Sci, 2018,9:526.
doi: 10.3389/fpls.2018.00526 pmid: 29765383
[44] 刘树兵, 王洪刚. 抗白粉病小麦-中间偃麦草(Thinopyrum intermedium, 2n = 42)异附加系的选育及分子细胞遗传鉴定. 科学通报, 2002,47:1500-1503.
Liu S B, Wang H G. Breeding and molecular cytogenetic identification of powdery mildew resistant wheat- Thinopyrum intermedium (Thinopyrum intermedium, 2n = 42) addition lines. Chin Sci Bull, 2002,47:1500-1503 (in Chinese).
[45] Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci, 2009,50:358-363.
[46] 张学勇. 普通小麦异源易位系的产生及利用. 遗传, 1991,13(5):39-44.
Zhang X Y. Production and utilization of heterologous translocation lines in common wheat. Hereditas, 1991,13(5):39-44 (in Chinese).
[47] 戴毅. 小麦-黑麦-偃麦草三属杂种种质创制及分子细胞遗传学研究. 扬州大学博士学位论文, 江苏扬州, 2017.
Dai Y. Development of Germplasms for Triticum-Secale- Thinopyrum trigeneric Hybrids and Molecular Cytogenetic Research. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[48] Linc G, Sepsi A, Molnár-láng M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongatum E genome. Cytogenet Genome Res, 2012,136:138-144.
doi: 10.1159/000334835 pmid: 22188811
[49] 李海凤, 刘慧萍, 戴毅, 黄帅, 张军, 高勇, 陈建民. 四倍体小麦背景中长穗偃麦草E染色体传递特征. 遗传, 2016,38:1021-1030.
Li H F, Liu H P, Dai Y, Huang S, Zhang J, Gao Y, Chen J M. Transmitting characters of individual E chromosomes of Thinopyrum elongatum in Triticum turgidum background. Hereditas, 2016,38:1021-1030 (in Chinese with English abstract).
[50] Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A. Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res, 2005,109:328-344.
pmid: 15753593
[51] 谢枫, 吴跃进, 杨阳, 倪晓宇, 余立祥, 刘斌美, 王钰. 不同小麦品种籽粒产量对低氮胁迫的响应及其与旗叶光合特性的关系. 生物学杂志, 2018,35(6):42-45.
Xie F, Wu Y J, Yang Y, Ni X Y, Yu L X, Liu B M, Wang Y. Yield response of wheat cultivars to low nitrogen stress and its relationship with photosynthetic traits in flab leaves. J Biol, 2018,35(6):42-45 (in Chinese with English abstract).
[52] 陈士强, 黄泽峰, 戴毅, 秦树文, 高营营, 高勇, 陈建民. 长穗偃麦草E组染色体对小麦光合速率和产量性状的效应. 扬州大学学报, 2013,34(1):50-55.
Chen S Q, Huang Z F, Dai Y, Qin S W, Gao Y Y, Gao Y, Chen J M. Effect of E chromosomes of Thinopyrum elongatum on photosynthesis and yield characters in wheat. J Yangzhou Univ, 2013, 34(1): 50‒55 (in Chinese with English abstract).
[53] 陈士强, 何震天, 张容, 王建华, 王锦荣, 陈建民, 陈秀兰. 长穗偃麦草优异基因的染色体定位及应用. 植物遗传资源学报, 2015,16:1062-1066.
Chen S Q, He Z T, Zhang R, Wang J H, Wang J R, Chen J M, Chen X L. Chromosomal localization of excellent genes in Thinopyrum elongatum and Thinopyrum ponticum and their application in wheat improvement. J Plant Genet Resour, 2015,16:1062-1066 (in Chinese with English abstract).
[54] Kumar A, Garg M, Kaur N, Chunduri V, Sharma S, Misser S, Kumar A, Tsujimoto H, Dou Q W, Gupta R K. Rapid development and characterization of chromosome specific translocation line of Thinopyrum elongatum with improved dough strength. Front Plant Sci, 2017,8:1593.
doi: 10.3389/fpls.2017.01593 pmid: 28959271
[1] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[2] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[5] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[6] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[7] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[8] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[9] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532.
[10] 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657.
[11] 王丹蕊,杜培,裴自友,庄丽芳,亓增军. 基于寡核苷酸探针套painting的中国春非整倍体高清核型及应用[J]. 作物学报, 2017, 43(11): 1575-1587.
[12] 周可,李燕,王世明,崔国庆,杨正林,何光华,凌英华,赵芳明. 水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析[J]. 作物学报, 2017, 43(07): 974-982.
[13] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
[14] 杨慧丽,林亚楠,张怀胜,卫晓轶,丁冬,薛亚东. 玉米开花期性状的QTL及杂种优势位点定位[J]. 作物学报, 2017, 43(05): 678-690.
[15] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!