作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1602-1611.doi: 10.3724/SP.J.1006.2013.01602
靳义荣1,2,白岩1,2,宋毓峰1,2,张良1,2,董连红1,2,刘朝科3,冯祥国3,胡晓明3,王倩,*,刘好宝1,*
JIN Yi-Rong1,2,BAI Yan1,2,SONG Yu-Feng1,2,ZHANG Liang1,2,DONG Lian-Hong1,2,LIU Chao-Ke3,FENG Xiang-Guo3,HU Xiao-Ming3,WANG Qian1,*,LIU Hao-Bao1,*
摘要:
Shaker家族钾离子通道在植物钾的吸收转运及其他生命过程中发挥重要作用。本研究利用同源克隆的策略从林烟草中获得一个Shaker家族钾离子通道基因,命名为NKT6 (GenBank登录号为KC310448)。该基因cDNA序列全长2 317 bp,编码由681个氨基酸组成的蛋白,该蛋白与Shaker家族其他成员具有较高同源性。NKT6基因组CDS序列共含有11个外显子、10个内含子。系统进化树分析表明,NKT6蛋白是Shaker家族Group II的成员之一。荧光定量PCR分析发现,NKT6的表达量在林烟草的茎和腋芽中最高,在萼片、叶、花中其次,在根中最低。亚细胞定位结果表明,NKT6主要定位于细胞膜和核膜附近的内质网上。干旱与外源ABA胁迫处理下,NKT6的表达量均呈下降趋势。推测NKT6可能在林烟草气孔开放中发挥作用。
[1]Mäser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H, Talke I N, Amtmann A, Maathuis F J M, Sanders D, Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126: 1646–1667[2]Amtmann A, Blatt M R. Regulation of macronutrient transport. New Phytol, 2008, 181: 35–52[3]Spalding E P, Hirsch R E, Lewis D R, Qi Z, Sussman M R, Lewis B D. Potassium uptake supporting plant growth in the absence of AKT1 channel activity inhibition by ammonium and stimulation by sodium. J General Physiol, 1999, 113: 909–918[4]Wang Y(王毅), Wu W-H(武维华). Molecular genetic mechanism of high efficient potassium uptake in plants. Chin Bull Bot (植物学报), 2009, 44(1): 27–36 (in Chinese)[5]Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev, 2000, 80: 555–592[6]Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998, 280: 69–77[7]Jan L Y, Jan Y N. Cloned potassium channels from eukaryotes and prokaryotes. Ann Rev Neurosci, 1997, 20: 91–123[8]Gambale F, Uozumi N. Properties of shaker-type potassium channels in higher plants. J Membrane Bioly, 2006, 210: 1–19[9]Qu P-Z(曲平治), Liu G-S(刘贯山), Liu H-B(刘好宝), Si C-C(司丛丛), Liu C-K(刘朝科), Hu X-M(胡晓明), Feng X-G(冯祥国), Zhang S-H(张守厚), Zhao J(赵静). Research advances in tobacco potassium ion channel. Chin Tob Sci (中国烟草科学), 2009, 30(2): 74–80 (in Chinese with English abstract)[10]Sano T, Becker D, Ivashikina N, Wegner L H, Zimmermann U, Roelfsema M R G, Nagata T, Hedrich R. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J, 2007, 50: 401–413[11]Guo Z-K(郭兆奎), Yang Q(杨谦), Yan P-Q(颜培强), Wan X-Q(万秀清). Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tob Sin (中国烟草学报), 2008, 14(5): 63–68 (in Chinese with English abstract)[12]Liu H B, Qu P Z, Liu G S, Sun Y H, Wang Q, Jin Y R, Song Y F, Zhao M. Cloning and expression analysis of potassium channel gene NKT3 from Nicotiana tabacum. Afr J Biotechnol, 2012, 11: 10824–10830[13]Qu P-Z(曲平治), Liu G-S(刘贯山), Liu H-B(刘好宝), Si C-C(司丛丛), Hu X-M(胡晓明), Feng X-G(冯祥国), Liu C-K(刘朝科). Cloning and sequence and expression analysis of potassium channel gene NKT4 in Nicotiana tabacum. J Plant Genet Resourc (植物遗传资源学报), 2009, 10(3): 354–359 (in Chinese with English abstract)[14]Si C-C(司丛丛), Liu G-S(刘贯山), Liu H-B(刘好宝), Jiao R(焦蓉), Wang S-L(王树林), Qu P-Z(曲平治), Liu C-K(刘朝科), Hu X-M(胡晓明), Feng X-G(冯祥国). Cloning and sequence analysis of potassium ion channel gene NKT5 in Nicotiana tabacum. Chin Tob Sci (中国烟草科学) 2010, 31(4): 8–12 (in Chinese with English abstract)[15]Goodin M M, Dietzgen R G, Schichnes D, Ruzin S, Jackson A O. pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J, 2002, 31: 375–383[16]Wang Q, Tao T, Zhang Y, Wu W, Li D, Yu J, Han C. Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virol J, 2011, 8: 8–24[17]Müller-Röbe B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R. Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO J, 1995, 14: 2409–2416[18]Su Y H, North H, Grignon C, Thibaud J B, Sentenac H, Véry A A. Regulation by external K+ in a maize inward Shaker channel targets transport activity in the high concentration range. Plant Cell, 2005, 17: 1532–1548[19]Hoffman M. New role found for a common protein. Science, 1991, 253: 742[20]Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H. Five-group distribution of the Shaker-like K+ channel family in higher plants. J Mol Evol, 2003, 56: 418–434[21]Comai L, Henikoff S. TILLING: practical single-nucleotide mutation discovery. Plant J, 2006, 45: 684–694[22]Hedrich R, Becker D, Geiger D, Marten I, Roelfsema M R G. Role of Ion Channels in Plants. Springer Protocols Handbooks, 2012. 295–322[23]Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol, 2003, 51: 773–787[24]Mouline K, Véry A A, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud J B, Sentenac H. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Gene Dev, 2002, 16: 339–350[25]Mansfield T, Hetherington A, Atkinson C. Some current aspects of stomatal physiology. Annu Rev Plant Biol, 1990, 41: 55–75[26]Pilot G, Lacombe B, Gaymard F, Chérel I, Boucherez J, Thibaud J B, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276: 3215–3221[27]Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell Online, 2002, 14: 343–357[28]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360[29]Mori I C, Uozumi N, Muto S. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cells. Plant Cell Physiol, 2000, 41: 850–856 |
[1] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[2] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[3] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[4] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[5] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[6] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[7] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[8] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
[9] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
[10] | 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62. |
[11] | 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029. |
[12] | 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428. |
[13] | 王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳,盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(04): 469-481. |
[14] | 丛亚辉,王婷婷,柳聚阁,王宁,高萌萌,李艳,盖钧镒. 大豆耐铝毒候选基因GmSTOP1的克隆与表达分析[J]. 作物学报, 2015, 41(12): 1802-1809. |
[15] | 吕高强,吴向阳,王心宇. 芝麻中一个富含脯氨酸新基因的克隆与特征分析[J]. 作物学报, 2015, 41(12): 1810-1818. |
|