作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1205-1212.doi: 10.3724/SP.J.1006.2014.01205
刘长英1,吕蕊花1,朱攀攀1,范伟1,李军1,王晓红1,李镇刚2,王茜龄1,赵爱春1,鲁成1,余茂德1,*
LIU Chang-Ying1,LÜ Rui-Hua1,ZHU Pan-Pan1,FAN Wei1,LI Jun1,WANG Xiao-Hong1,LI Zhen-Gang2,WANG Xi-Ling1,ZHAO Ai-Chun1,LU Cheng1,YU Mao-De1,*
摘要:
EIN2是植物体内乙烯信号转导的中心元件,负责将乙烯信号由内质网传递到细胞核中。本文通过检索桑树基因组数据,获得一个EIN2候选基因(MaEIN2),并进行生物信息学分析和表达分析。该MaEIN2全长5614 bp,由7个外显子和6个内含子组成,包含3921 bp的CDS,编码1036个氨基酸残基。MaEIN2在进化树中与草莓、桃树等双子叶植物的EIN2蛋白关系较近,与单子叶植物关系较远。MaEIN2在老叶和成熟果实中的表达量分别高于在幼叶和幼果中,且随果实发育呈逐渐上升趋势,MaEIN2可能与器官的成熟衰老有关。选用乙烯利、ABA和NaCl处理桑树种苗,乙烯利能够促进MaEIN2的表达,而ABA和NaCl抑制MaEIN2的表达。本文为深入研究MaEIN2基因的功能奠定了基础。
[1]Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Dev Biol, 2000, 16: 1–18[2]Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998, 32: 227–254[3]Wang K L, Li H, Ecker J R. Ethylene biosynthesis and signaling networks. Plant Cell, 2002, 14: S131–S151[4]Alonso J M, Stepanova A N. The ethylene signaling pathway. Science, 2004, 306: 1513–1515[5]Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant, 2013, 6: 11–14[6]Ju C, Yoon G M, Shemansky J M, Lin D Y, Ying Z I, Chang J, Garrett W M, Kessenbrock M, Groth G, Tucker M L, Cooper B, Kieber J J, Chang C. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 19486–19491[7]Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284: 2148–2152[8]Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103–1115[9]Su W, Howell S H. A single genetic locus ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol, 1992, 99: 1569–1574[10]Qiao H, Shen Z, Huang S S, Schmitz R J, Urich M A, Briggs S P, Ecker J R. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 2012, 338: 390–393[11]Bisson M M, Bleckmann A, Allekotte S, Groth G. EIN2, the central regulator of ethylene signaling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J, 2009, 424: 1–6[12]Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res, 2012, 22: 1613–1616[13]Shibuya K, Barry K G, Ciardi J A, Loucas H M, Underwood B A, Nourizadeh S, Ecker J R, Klee H J, Clark D G. The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol, 2004, 136: 2900–2912[14]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336[15]Hu Z L, Deng L, Chen X Q, Wang P Q, Chen G P. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russian J Plant Physiol, 2010, 57: 554–559[16]Oeller P W, Lu M W, Taylor L P, Pike D A, Theologis A. Reversible inhibition of fruit senescence by antisense RNA. Science, 1991, 254: 437–439[17]Ayub R, Guis M, Ben Amor M, Gillot L, Roustan J P, Latché A, Bouzayen M, Pech J C. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe. Nat Bitechnol, 1991, 14: 862–866[18]Bleecker A B, Estelle M A, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 1988, 241: 1086–1089[19]P Guzmán, Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 1990, 2: 513–523[20]Lin Y, Chen D, Paul M, Zu Y, Tang Z. Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol Plant, 2013, 35: 1319–1328[21]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644[22]Lei G, Shen M, Li Z G, Zhang B, Duan K X, Wang N, Cao Y R, Zhang W K, Ma B, Ling H Q, Chen S Y, Zhang J S. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ, 2011, 34: 1678–1692 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[6] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[7] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[8] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[9] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[10] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[11] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[12] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[13] | 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032. |
[14] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[15] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
|