欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1197-1204.doi: 10.3724/SP.J.1006.2014.01197

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生SSR标记与农艺性状的相关性

周金超,杨鑫雷,穆国俊,崔顺立,侯名语,陈焕英,刘立峰*   

  1. 华北作物种质资源教育部重点实验室 / 河北省作物种质资源重点实验室 / 河北农业大学, 河北保定071001
  • 收稿日期:2013-11-05 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 刘立峰, E-mail: liulifeng@hebau.edu.cn, Tel: 0312-7528136 第一作者联系方式: E-mail: zhoujinchao0230@163.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-14), 高等学校博士学科点科研专项(20121302110002), 农业部引进国际先进农业科学技术计划(948计划)项目(2013-Z65)和河北省高等学校科学技术研究重点项目(ZD2010136)资助。

Correlation of SSR Markers with Agronomic Traits in Peanut (Arachis hypogaea L.)

ZHOU Jin-Chao,YANG Xin-Lei,MU Guo-Jun,CUI Shun-Li,HOU Ming-Yu,CHEN Huan-Ying,LIU Li-Feng*   

  1. North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory of Crop Germplasm Resources of Hebei / Agricultural University of Hebei, Baoding 071001, China
  • Received:2013-11-05 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 刘立峰, E-mail: liulifeng@hebau.edu.cn, Tel: 0312-7528136 第一作者联系方式: E-mail: zhoujinchao0230@163.com

摘要:

以农家品种四粒红和冀农黑3号构建的包含有251个家系的重组自交系(RIL)群体为材料, 在保定市和邯郸大名县两地进行表型鉴定, 利用Pearson’s相关和逐步多元回归分析了花生农艺性状之间及其与标记的相关性。结果表明, 多数农艺性状间存在显著或极显著相关, 其中相关性最高的为单株生产力和单株仁重(r=0.970), 其次是主茎高和第一侧枝长(r=0.918); 77对SSR标记与18个农艺性状显著相关, 每个性状相关标记数在2~16之间; 14个SSR标记与13个农艺性状关联, 解释的表型变异为5.2%~11.5%。以上结果为今后花生的常规育种和分子标记辅助选择奠定了基础。

关键词: 花生, 重组自交系, 农艺性状, SSR, 相关

Abstract:

A Recombinant Inbred Line (RIL) population including 251 lines, derived from the cross between Silihong and Jinonghei 3 was used to study the correlations between SSR markers and agronomic traits at two locations of Baoding and Handan, Hebei with Pearson’s correlation and stepwise multiple linear regression analysis. The results showed that there were significant correlations (P≤0.05, P≤0.01) among 18 agronomic traits, with the higher correlations between pod weight per plant and seed weight per plant (r=0.970), as well as the height of main stem and length of first branches (r=0.918). There existed significant correlation between SSR marker and agronomic trait with a average of 2–6 markers correlated with each agronomic trait. Fourteen SSR markers were associated with 13 agronomic traits with explanined phenotypic variances of 5.2%–11.5%. All these laid a solid foundation for peanut conventional breeding and molecular marker-assisted breeding programs.

Key words: Peanut, Recombinant inbred line, Agronomic traits, SSR, Correlation

[1]方宣钧, 吴为人, 唐纪良. 作物DNA分子辅助育种. 北京: 北京科学出版社, 2002. pp 41–45



Fang X J, Wu W R, Tang J L. DNA Marker Assisted in Crop Breeding. Beijing:Beijing Science Press, 2002. pp 41–51 (in Chinese)



[2]As?´ns. M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281–291



[3]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225–238



[4]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395–402



Hong Y B, Liang X Q, Chen X P, Liu H J, Zhou G Y, Li S X, Wen S J. Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin, 2009, 35: 395–402 (in Chinese with English abstract)



[5]彭文舫, 姜慧芳, 任小平, 吕建伟, 赵新燕, 黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析. 华北农学报, 2010, 25(6): 81–86



Peng W F, Jiang H F, Ren X P, Lü J W, Zhao X Y, Huang L. Construction of AFLP genetic linkage map and detection of QTLs for bacterial wilt resistance in peanut (Arachis hypogaea L.). Acta Agric Boreali-Sin, 2010, 6: 81–86 (in Chinese with English abstract)



[6]Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971–984



[7]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学硕士学位论文, 2011



Zhang X Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L). MS Thesis of Zhejiang University, Hangzhou, China, 2011 (in Chinese with English abstract)



[8]Chu Y, Wu C L, Holbrook C C, Tillman B L, Person G, Ozias-Akins P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4: 110–117



[9]Gautami B, Pandey M K, Vadez V, Nigam S N, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 757–772



[10]张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄兵艳. 花生主要品质性状的QTLs 定位分析. 中国油料作物学报, 2012, 34: 311–315



Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J of Oil Crop Sci, 2012, 34: 311–315 (in Chinese with English abstract)



[11]Sujay V, Gowda M V, Pandey M K, Bhat R S, Khedikar Y P, Nadaf H L, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp S J, Varshney P K. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 773–788



[12]Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26



[13]张博, 莫惠栋, 杜生明, 黄敏仁. 林木遗传图谱研究现状及发展趋势. 中国生物工程杂志, 2003, 23(4): 14–18



Zhang B, Mu H D, Du S M, Huang M R. Status quo and tendency in construction of forest frees genetic linkage maps. Chin J Biotechnol, 2003, 23(4): 14–18 (in Chinese with English abstract)



[14]徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994. pp 110–179



Xu Y B, Zhu L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994. pp 110–179 (in Chinese)



[15]Wu J X, Jenkins J N, McCarty J C, Zhong M, Swindle M. AFLP marker associations with agronomic and fiber traits in cotton. Euphytica, 2007, 153: 153–163



[16]魏志刚, 杨传平, 潘华. 利用多元回归分析鉴定与白桦纤维长度性状相关的分子标记. 分子植物育种, 2006, 4: 835–840



Wei Z G, Yang C P, Pan H. Identification of molecular marker associated with birch fiber length trait by multiple regression analysis. Mol Plant Breed, 2006, 4: 835–840 (in Chinese with English abstract)



[17]陈静, 胡晓辉, 苗华荣, 崔凤高, 禹山林. CTAB法提取花生总DNA在SSR和SRAP中的扩增效果. 花生学报, 2008, 37(1): 29–31



Chen J, Hu X H, Miao H R, Cui F G, Yu S L. Genome DNA extracted with CTAB method and its use for SSR and SRAP. J Peanut Sci, 2008, 37(1): 29–31 (in Chinese with English abstract)



[18]崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009, 42: 3346–3353



Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landrace in hebei province revealed by SSR markers. Sci Agric Sin, 2009, 42: 3346–3353 (in Chinese with English abstract)



[19]姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 18–74



Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 18–74 (in Chinese)



[20]Kraakman A T, Wageningen A J, Niks R E, Stam P. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446



[21]殷冬梅, 李栓柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212–216



Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212–216 (in Chinese with English abstract)



[22]杨鑫雷, 周晓栋, 刘恒蔚, 王省芬, 吴立强, 李志坤, 张燕, 张桂寅, 马峙英. AFLP标记与棉花重要农艺性状的关联研究. 棉花学报, 2013, 25: 211–216



Yang X L, Zhou X D, Liu H W, Wang X F, Wu L Q, Li Z K, Zhang Y, Zhang G Y, Ma Z Y. AFLP marker association with important agronomic traits in cotton. Cotton Sci, 2013, 25: 211–216 (in Chinese with English abstract)

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26.
[10] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[11] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[12] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[13] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[14] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[15] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!