[1]方宣钧, 吴为人, 唐纪良. 作物DNA分子辅助育种. 北京: 北京科学出版社, 2002. pp 41–45
Fang X J, Wu W R, Tang J L. DNA Marker Assisted in Crop Breeding. Beijing:Beijing Science Press, 2002. pp 41–51 (in Chinese)
[2]As?´ns. M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281–291
[3]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225–238
[4]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395–402
Hong Y B, Liang X Q, Chen X P, Liu H J, Zhou G Y, Li S X, Wen S J. Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin, 2009, 35: 395–402 (in Chinese with English abstract)
[5]彭文舫, 姜慧芳, 任小平, 吕建伟, 赵新燕, 黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析. 华北农学报, 2010, 25(6): 81–86
Peng W F, Jiang H F, Ren X P, Lü J W, Zhao X Y, Huang L. Construction of AFLP genetic linkage map and detection of QTLs for bacterial wilt resistance in peanut (Arachis hypogaea L.). Acta Agric Boreali-Sin, 2010, 6: 81–86 (in Chinese with English abstract)
[6]Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971–984
[7]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学硕士学位论文, 2011
Zhang X Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L). MS Thesis of Zhejiang University, Hangzhou, China, 2011 (in Chinese with English abstract)
[8]Chu Y, Wu C L, Holbrook C C, Tillman B L, Person G, Ozias-Akins P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4: 110–117
[9]Gautami B, Pandey M K, Vadez V, Nigam S N, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 757–772
[10]张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄兵艳. 花生主要品质性状的QTLs 定位分析. 中国油料作物学报, 2012, 34: 311–315
Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J of Oil Crop Sci, 2012, 34: 311–315 (in Chinese with English abstract)
[11]Sujay V, Gowda M V, Pandey M K, Bhat R S, Khedikar Y P, Nadaf H L, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp S J, Varshney P K. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 773–788
[12]Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26
[13]张博, 莫惠栋, 杜生明, 黄敏仁. 林木遗传图谱研究现状及发展趋势. 中国生物工程杂志, 2003, 23(4): 14–18
Zhang B, Mu H D, Du S M, Huang M R. Status quo and tendency in construction of forest frees genetic linkage maps. Chin J Biotechnol, 2003, 23(4): 14–18 (in Chinese with English abstract)
[14]徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994. pp 110–179
Xu Y B, Zhu L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994. pp 110–179 (in Chinese)
[15]Wu J X, Jenkins J N, McCarty J C, Zhong M, Swindle M. AFLP marker associations with agronomic and fiber traits in cotton. Euphytica, 2007, 153: 153–163
[16]魏志刚, 杨传平, 潘华. 利用多元回归分析鉴定与白桦纤维长度性状相关的分子标记. 分子植物育种, 2006, 4: 835–840
Wei Z G, Yang C P, Pan H. Identification of molecular marker associated with birch fiber length trait by multiple regression analysis. Mol Plant Breed, 2006, 4: 835–840 (in Chinese with English abstract)
[17]陈静, 胡晓辉, 苗华荣, 崔凤高, 禹山林. CTAB法提取花生总DNA在SSR和SRAP中的扩增效果. 花生学报, 2008, 37(1): 29–31
Chen J, Hu X H, Miao H R, Cui F G, Yu S L. Genome DNA extracted with CTAB method and its use for SSR and SRAP. J Peanut Sci, 2008, 37(1): 29–31 (in Chinese with English abstract)
[18]崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009, 42: 3346–3353
Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landrace in hebei province revealed by SSR markers. Sci Agric Sin, 2009, 42: 3346–3353 (in Chinese with English abstract)
[19]姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 18–74
Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 18–74 (in Chinese)
[20]Kraakman A T, Wageningen A J, Niks R E, Stam P. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446
[21]殷冬梅, 李栓柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212–216
Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212–216 (in Chinese with English abstract)
[22]杨鑫雷, 周晓栋, 刘恒蔚, 王省芬, 吴立强, 李志坤, 张燕, 张桂寅, 马峙英. AFLP标记与棉花重要农艺性状的关联研究. 棉花学报, 2013, 25: 211–216
Yang X L, Zhou X D, Liu H W, Wang X F, Wu L Q, Li Z K, Zhang Y, Zhang G Y, Ma Z Y. AFLP marker association with important agronomic traits in cotton. Cotton Sci, 2013, 25: 211–216 (in Chinese with English abstract) |