欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1190-1196.doi: 10.3724/SP.J.1006.2014.01190

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

土壤宏基因组中抗草甘膦新基因的克隆与转化水稻的研究

王云鹏1,2,马景勇1,马瑞2,马建1,*,刘文国1,2,*   

  1. 1吉林农业大学农学院, 吉林长春 130118; 2吉林省农业科学院, 吉林长春 130033
  • 收稿日期:2014-01-26 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 马建, E-mail: majian19790106@163.com; 刘文国, E-mail: liuwenguo168@163. com
  • 基金资助:

    本研究由吉林省重点科技攻关项目(20140204008NY)资助。

Cloning of New Herbicide Resistant Gene in Soil Metagenomics and the Generation of Transgenic Rice Plants

WANG Yun-Peng1,2,MA Jing-Yong1,MA Rui1,MA Jian 1,*,LIU Wen-Guo1,2,*   

  1. 1Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; 2Jilin Academy of Agricultural Sciences, Changchun 130033, China
  • Received:2014-01-26 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 马建, E-mail: majian19790106@163.com; 刘文国, E-mail: liuwenguo168@163. com

摘要:

EPSPS (5-烯醇丙酮莽草酸-3-磷酸合酶EC 2.5.1.19)是植物芳香族氨基酸和植物次生代谢产物生物合成中莽草酸途径的关键酶; 同时也是广谱性除草剂草甘膦的作用目标。本实验通过对草甘膦污染土壤宏基因组文库的建立及筛选, 成功克隆了一个新的草甘膦抗性的EPSPS基因(命名为soilEPSPS)。序列分析表明soilEPSPS基因全长1404 bp, 其编码的467个氨基酸中未涉及已公布专利中保护的氨基酸序列。原核功能验证表明该基因对草甘膦的耐受能力优于EPSPS CP4基因。将该基因与水稻Rubisco SSU引导肽相融合构建由actin启动子驱动的植物表达载体, 用农杆菌介导法实现了水稻的遗传转化。抗性再生植株的PCR和Southern杂交结果表明所获得的26株再生植株均为转基因阳性植株, 其中共有3个单拷贝转化事件。草甘膦抗性鉴定证明纯合体T2代植株能够耐受高达500 mmol L-1的草甘膦。本研究为转基因抗除草剂水稻新品种的培育奠定了基础。

关键词: 宏基因组, 水稻, 农杆菌, 遗传转化

Abstract:

The EPSPS, EC 2.5.1.19 (5-enolpyruvylshikimate-3-phosphate synthase) is considered as one of the crucial enzyme in the shikimate pathway for the biosynthesis of essential aromatic amino acids and secondary metabolites in plant. It is also proved as a specific target of broad spectrum herbicide glyphosate. In this research, a new glyphosate resistant EPSPS gene named soilEPSPS was isolated by screening the metagenomic library. The sequence analysis suggested that soilEPSPS consists of 1404 bp and encodes a polypeptide of 467 amino acids that are not involved in the amino acid sequence protected by the published patentsions. The result of prokaryotic expression confirmed that soilEPSPS had a better ability of glyphosate resistance than EPSPS CP4 gene. Fusing the gene and the Rubisco SSU signal peptide constructed the plant expressing vector with the actin promoter driven, and transformation of rice mediated by Agrobacterium tumefaciens. PCR and Southern analyses showed that a total of 26 transgenic plants were obtained and three of them were single copy insertion events. Resistant experiment showed that the homozygous T2 plants in these events could tolerate the spray of 500 mmol L-1 glyphosate solution. This study laid a foundation for breeding transgenic herbicide resistant rice varieties.

Key words: Metagenomics, Rice, Agrobacterium tumefaciens, Genetic transformation

[1]Bhatti K H, Parveen T, Farooq, A, Nawaz, K, Hussain K, Siddiqui E H. A Critical Review on Herbicide Resistance in Plants. World Appl Sci J, 2013, 27: 1027–1036



[2]Simmons W J. Bowman v. Monsanto and the protection of patented replicative biologic technologies. Nat Biotechnol, 2013, 31: 602–606



[3]Duke S O, Powles S B. Glyphosate: a once–in–a–century herbicide. Pest Manag Sci, 2008, 64: 319–325



[4]Shaw D R, Owen M D K, Dixon P M, Weller S C, Young B G, Wilson R G, Jordan D L. Benchmark study on glyphosate–resistant cropping systems in the United States. Part 1: Introduction to 2006–2008. Pest Manag Sci, 2011, 67: 741–746



[5]Owen M D K, Young B G, Shaw D R, Wilson R G, Jordan D L, Dixon P M, Weller S C. Benchmark study on glyphosate–resistant crop systems in the United States. Part 2: Perspectives. Pest Manag Sci, 2011, 67: 747–757



[6]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59: 143–169



[7]Torsvik V, Øvreås L. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol, 2002, 5: 240–245



[8]Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 2004, 68: 669–685



[9]Zhang X, Li H, Li C J, Ma T, Li G, Liu Y H. Metagenomic approach for the isolation of a thermostable beta-galactosidase with high tolerance of galactose and glucose from soil samples of Turpan Basin. BMC Microbiol, 2013, 13(1): 237



[10]Culligan E P, Sleator R D, Marchesi J R, Hill C. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J, 2012, 6: 1916–1925



[11]赵裕栋, 周俊, 何璟. 土壤微生物总DNA提取方法的优化. 微生物学报, 2012, 52: 1143–1150



Zhao Y D, Zhou B, He J. Optimization of soil microbial DNA isolation. Acta Microbiol Sin, 2012, 52: 1143–1150 (in Chinese with English abstract)



[12]Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high–speed transformation of rice. Plant J, 2006, 47: 969–976



[13]Kishore G M, Shah D M. Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase: U.S. Patent 4971908. 1990-11-20



[14]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5633435. 1997-5-27



[15]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5627061. 1997-5-6



[16]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5804425. 1998-9-8.



[17]Funke T, Han H, Healy–Fried M L, Fischer M, Schönbrunn E. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci, 2006, 103: 13010–13015



[18]Benbrook C M. Impacts of genetically engineered crops on pesticide use in the US––the first sixteen years. Environ Sci Eur, 2012, 24: 1–13



[19]James C. A global overview of biotech (GM) crops. Landes Bioscience, Austin, America, GM Crops, 2010, 1: 1–8



[20]赵海铭, 宋伟彬, 赖锦盛. 高粱 5-烯醇式丙酮酰莽草酸-3-磷酸合酶基因 (EPSPS)叶绿体转运肽(CTP)的克隆及其在转基因玉米中的功能验证. 农业生物技术学报, 2013, 21: 1009–1018



Zhao H M, Song W B, Lai J S. Cloning of sorghum bicolor chloroplast transit peptide (CTP) of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and its functional validation in transgenic maize (Zea mays). J Agric Biotechnol, 2013, 21: 1009–1018 (in Chinese with English abstract)



[21]Daniell H, Datta R, Varma S, Gray S, Lee S B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol, 1998, 16: 345–348

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!