欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 89-99.doi: 10.3724/SP.J.1006.2015.00089

• 耕作栽培·生理生化 • 上一篇    下一篇

甬优系列籼粳杂交稻根系形态与生理特征

姜元华,许俊伟,赵可,韦还和,孙建军,张洪程*,戴其根,霍中洋,许轲,魏海燕,郭保卫   

  1. 扬州大学 农业部长江流域稻作技术创新中心/ 江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2014-04-18 修回日期:2014-09-16 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220
  • 基金资助:

    本研究由国家粮食丰产科技工程(2011BAD16B03),国家公益性行业(农业)科研专项(201303102)和农业部超级稻专项(02318802013231)资助。

Root System Morphological and Physiological Characteristics of Indica-japonica Hybrid Rice of Yongyou Series

JIANG Yuan-Hua,XU Jun-Wei,ZHAO Ke,WEI Huan-He,SUN Jian-Jun,ZHANG Hong-Cheng*,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei   

  1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2014-04-18 Revised:2014-09-16 Published:2015-01-12 Published online:2014-11-11
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220

摘要: 以甬优籼粳杂交稻群体(A)为研究对象,在稻麦两熟制机插高产栽培条件下,以三系杂交粳稻群体(B)、超级常规粳稻(C)和超级杂交籼稻群体(D)为对照的试验,旨在揭示甬优系列籼粳杂交稻超高产根系形态生理特征。结果表明:(1) 在生育中、后期,A的根系干重、地上部干重、根尖数、根系长度、根系表面积、根系体积及根冠比均显著高于B、C和D。(2) 抽穗期不定根(根径>0.3 mm)的根尖数、根系长度、根系表面积和根系体积占总根的比例表现为A大于B和C,小于D;细分支(根径≤0.1 mm)与粗分支(0.1 mm<根径≤0.3 mm)的根尖数、根系长度、根系表面积和根系体积占总根的比例均表现为A大于D,小于B和C。抽穗期土层0~5 cm、5~10 cm和10~15 cm范围根干重占根系总干重的比例表现为A大于B和C,小于D;土层15~25 cm、25~35 cm、35~45 cm、45~55 cm范围根干重占根系总干重的比例表现为A大于D,小于B和C。(3) A抽穗后根系总吸收面积、根系活跃吸收面积、根系伤流强度以及根系氧化力和根系还原力均高于B、C和D。与杂交粳稻、常规粳稻和杂交籼稻相比,甬优系列籼粳杂交稻具有根冠协调水平高、群体根量大、分支结构优、根系深扎性好以及中、后期生理活性强等优势,这种根系特征为其超高产的实现提供了重要保障。

关键词: 籼粳杂交稻, 甬优系列, 根系形态生理

Abstract: A field experiment was conducted to compare the root system morphological and physiological characteristics of four types of rice populations including indica-japonica hybrid rice of Yongyou series (A), japonica hybrid rice (B), conventional japonica rice (C), and indica hybrid rice (D) under high-yielding cultivation condition in the rice-wheat cropping system. Results were as follows: (1) The root dry weight, aboveground dry weight, number of root tips, root length, root surface area, root-shoot ratio and root volume of A were obviously higher than those of B, C, and D at the middle and late growth stage. (2) The proportion of number, length, surface area and volume of the adventitious roots(root diameter > 0.3 mm) to the whole roots of A were higher than those of B and C, while lower than those of D at heading; the proportion of number, length, surface area and volume of the fine branches (root diameter ≤ 0.1 mm) and coarse branches (0.1 mm < root diameter ≤ 0.3 mm) to total roots of A were higher than those of D, while lower than those of B and C at heading. The proportions of root weight in 0–5 cm, 5–10 cm, and 10–15 cm soil layers to total roots weight of A were higher than those of B and C, while lower than those of D; however, the proportions of root weight in 15–25 cm, 25–35 cm, 35–45 cm, and 45–55 cm soil layers to the total root weight where lower than those of B and C, while higher than these of D at heading. (3) The total absorbing surface area, active absorbing surface area, bleeding intensity, root oxidation activity, and root reducing activity of A were higher than those of B, C, and D. Compared with B, C, and D, the indica-japonica hybrid rice of Yongyou series had significant advantage in root-shoot coordination level, root amount. branch structure, root distribution in soil and biological activity in the middle and late growth stage. This peculiarity of A provides an important guarantee to realize the super-high-yield.

Key words: Indica-japonica hybrid rice, Yongyou series, Morphology and physiology of roots

[1]Fitter A. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York: Marcel Dekker Inc., 2002. pp 15–32

[2]Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant Cell Physiol, 2004, 45(suppl): 17

[3]Arima S, Saisho K, Harada J. Morphological analysis of the rice root system based on root diameter. Jpn J Crop Sci, 2001, 70: 408-417

[4]Shimizu H, Tanabata T, Xie X Z, Inagaki N, Takano M, Shinomura T. Physiological function of phytochromes in seminal root growth of rice seedlings. Plant Cell Physiol, 2006, 47(suppl): 203–206

[5]朱德峰, 林贤青, 曹卫星. 水稻深层根系对生长和产量的影响. 中国农业科学, 2001, 34: 429–432

Zhu D F, Lin X Q, Cao W X. Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin, 2001, 34: 429–432 (in Chinese with English abstract)

[6]何强, 邓华凤, 舒服, 杨益善, 刘国华, 刘建丰, 陈立云. 杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系. 杂交水稻, 2006, 21(3): 75–77

He Q, Deng H F, Shu F, Yang Y S, Liu G H, Liu J F, Chen L Y. Correlation of rooting traits in seedling stage to activity of root system in late growth stage and panicle traits in hybrid rice. Hybrid Rice, 2006, 21(3): 75–77 (in Chinese with English abstract)

[7]石庆华, 李木英, 许锦彪, 谭雪明. 高温胁迫对早稻根系质膜ATPase活性及NH4+吸收的影响. 作物学报, 2006, 32: 1044–1048

Shi Q H, Li M Y, Xu J B, Tan X M. Effects of high temperature stress on ATPase activity of plasma membrane and NH4+ absorption rate in roots of early rice. Acta Agron Sin, 2006, 32: 1044–1048 (in Chinese with English abstract)

[8]Yang L, Wang Y, Kobayashi K, Zhu J, Huang J, Yang H, Wang Y, Dong G, Liu G, Han Y, Shan Y, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biol, 2008, 14: 1–10

[9]Debi B R, Taketa S, Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol, 2005, 162: 507–515

[10]曾翔, 李阳生, 谢小立, 肖国樱, 廖江林. 不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响. 中国水稻科学, 2003, 17: 355–359

Zeng X, Li Y S, Xie X L, Xiao G Y, Liao J L. Effects of different irrigation patterns on physiological characteristics of root and photosynthetic traits of flag leaf after flowering stage in hybrid rice. Chin J Rice Sci, 2003, 17: 355–359 (in Chinese with English abstract) 

[11]张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46: 686–704

Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. Sci Agric Sin, 2013, 46: 686–704 (in Chinese with English abstract)

[12]李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征. 作物学报, 2012, 38: 648−656

Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Cao Li Q, Wu H. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2012, 38: 648−656 (in Chinese with English abstract)

[13]董桂春, 陈琛, 王熠, 仲军, 袁秋梅, 羊彬, 于小风, 李进前, 田昊, 张燕, 蒋亚明, 孟令响, 王余龙. 生育期与粳稻品种根系性状的关系分析. 中国水稻科学, 2013, 27: 398–404

Dong G C, Chen C, Wang Y, Zhong J, Yuan Q M, Yang B, Yu X F, Li J Q, Tian H, Zhang Y, Jiang Y M, Meng L X, Wang Y L. Chin J Rice Sci, 2013, 27: 398–404 (in Chinese with English abstract)

[14]Li R H, Jiang T B, Xu C G, Li X H, Wang X K. Relationship between morphological and genetic differentiation in rice (Oryza sativa L.). Euphytica, 2000, 114: 1–8

[15]马荣荣, 许德海, 王晓燕, 禹盛苗, 金千瑜, 欧阳由男, 朱练峰. 籼粳亚种间杂交稻甬优6号超高产株形特征与竞争优势分析. 中国水稻科学, 2007, 21: 281–286

Ma R R, Xu D H, Wang X Y, Yu S M, Jian Q Y, Ou-Yang Y N, Zhu L F. Heterosis on plant morphology of Yongyou6, an indica japonica inter subspecific super high yielding hybrid rice. Chin J Rice Sci, 2007, 21: 281–286 (in Chinese with English abstract)

[16]许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2007, 21: 281–286

Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-Yang Y N, Jin Q Y. Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2007, 21: 281–286(in Chinese with English abstract)

[17]Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545–554

[18]Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J Plant Nutr, 2005, 28: 835–850

[19]Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu Province. Acta Agron Sin, 2011, 37: 1020–1030

[20]Zhang H, Xue Y G, Wang Z Q. Morphological and physiological traits of roots and their relationships with shoot growth in super rice. Field Crops Res, 2009, 113: 31–40

[21]潘晓华, 王永锐, 傅家瑞. 水稻根系生长生理的研究进展. 植物学通报, 1996, 13(2): 13–20

Pan X H, Wang Y R, Fu J R. Advance in the study on the growth-physiology in rice of root system (Oryza sativa). Chin Bull Bot, 1996, 13(2): 13–20 (in Chinese with English abstract)

[22]刘文兆, 李秧秧. 断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题. 西北植物学报, 2003, 23: 1320–1324

Liu W Z, Li Y Y. Effect of crop root-cutting on grain yield and water use efficiency: a review. Acta Bot Boreali-Occident Sin, 2003, 23(8): 1320–1324 (in Chinese with English abstract)

[23]汪 强, 樊小林, 刘 芳, 李方敏, Klaus D, Sattemacher B. 断根和覆草旱作条件下水稻的产量效应. 中国水稻科学, 2004, 18: 437–442

Wang Q, Fan X L, Liu F, Li F M, Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci, 2004, 18: 437–442 (in Chinese with English abstract) 

[24]郎有忠, 杨建昌, 朱庆森. 亚种间杂交稻根系形态生理特征及其与籽粒充实度关系的研究. 作物学报, 2003, 29: 230–235

Lang Y Z, Yang J C, Zhu Q S. Studies on the morphological and physiological characteristics of the root system of interspecific hybrid rice and their relationship with grain plumpness. Acta Agron Sin, 2003, 29: 230–235 (in Chinese with English abstract)

[25]徐其军, 汤亮, 顾东祥, 朱艳. 基于形态参数的水稻根系三维建模及可视化. 农业工程学报, 2010, 26(10): 188–194

Xu Q J, Tang L, Gu D X, Zhu Y. Architectural parameter-based three dimensional modeling and visualization of rice roots. Trans CSAE, 2010, 26(10): 188–194 (in Chinese with English abstract)

[26]顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征. 植物生态学报, 2011, 35: 558–566

Gu D X, Tang L, Xu Q J, Lei X J, Cao W X, Zhu Y. Root growth and distribution in rice cultivars as affected by nitrogen and water supply. Chin J Plant Ecol, 2011, 35: 558–566 (in Chinese with English abstract)

[27]戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770-4781

Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770-4781 (in Chinese with English abstract)

[28]Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants. Jpn J Crop Sci, 1996, 55: 520–525

[29]李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208−2220

Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208−2220 (in Chinese with English abstract)

[30]Yoshida S. Relation between rice plant type and root growth. Soil Sci Plant Nutr, 1982, 28: 473–482

[31]吴伟明, 宋祥甫, 孙宗修, 于永红, 邹国燕. 不同类型水稻的根系分布特征比较. 中国水稻科学, 2001, 15: 276–280

Wu W M, Song X F, Sun Z X, Yu Y H, Zou G Y. Comparison of root distribution between different type rice. Chin J Rice Sci, 2001, 15: 276–280 (in Chinese with English abstract)

[32]许明, 贾德涛, 陈温福. 北方粳型超级稻根系生长与地上部分生物量的变化. 华北农学报, 2010, 25(3): 140–144

Xu M ,Jia D T, Chen W F. Change on root growth and acrial part biomass in north China japonica super rice. Acta Agric Boreali-Sin, 2010, 25(3): 140–144 (in Chinese with English abstract)

[33]沈波, 王熹. 两个亚种间杂交稻组合的根系生理活性. 中国水稻科学, 2002, 16: 146–150

Shen B, Wang X. Physiological activities of root system in two iner-subspecific hybrid rice combinations. Chin J Rice Sci, 2002, 16: 146–150 (in Chinese with English abstract)

[34]付景, 陈露, 黄钻华, 王志琴, 杨建昌. 超级稻叶片光合特性和根系生理性状与产量的关系. 作物学报, 2012, 38: 1264–1276

Fu J, Chen L, Huang Z H, Wang Z Q, Yang J C. Relationship of leaf photosynthetic characteristics and root physiological traits with grain yield in super rice. Acta Agron Sin, 2012, 38: 1264–1276 (in Chinese with English abstract)

[1] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382.
[2] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[3] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[4] 孟天瑶,葛佳琳,张徐彬,韦还和,陆钰,李心月,陶源,丁恩浩,周桂生,戴其根. 甬优中熟籼粳杂交稻栽后植株氮素积累模型与特征[J]. 作物学报, 2020, 46(5): 798-806.
[5] 徐栋, 朱盈, 周磊, 韩超, 郑雷鸣, 张洪程, 魏海燕, 王珏, 廖桉桦, 蔡仕博. 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性 [J]. 作物学报, 2018, 44(10): 1548-1559.
[6] 曾研华,张玉屏,潘晓华,朱德峰,向镜,陈惠哲,张义凯. 花后低温对水稻籽粒灌浆与内源激素含量的影响[J]. 作物学报, 2016, 42(10): 1551-1559.
[7] 韦还和,孟天瑶,李超,张洪程,史天宇,马荣荣,王晓燕,杨筠文,戴其根,霍中洋,许轲,魏海燕,郭保卫. 甬优籼粳杂交稻花后干物质积累模型与特征分析[J]. 作物学报, 2016, 42(02): 265-277.
[8] 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776.
[9] 孟天瑶,许俊伟,邵子彬,葛梦婕,张洪程,魏海燕,戴其根,霍中洋,许轲,郭保卫,荆培培. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征[J]. 作物学报, 2015, 41(11): 1711-1725.
[10] 姜元华,许轲,赵可,孙建军,韦还和,许俊伟,魏海燕,郭保卫,霍中洋,戴其根,张洪程*. 甬优系列籼粳杂交稻的冠层结构与光合特性[J]. 作物学报, 2015, 41(02): 286-296.
[11] 刘立军,王康君,卞金龙,熊溢伟,陈璐,王志琴,杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系[J]. 作物学报, 2014, 40(11): 1999-2007.
[12] 胡雅杰,朱大伟,钱海军,曹伟伟,邢志鹏,张洪程,周有炎,陈厚存,汪洪洋,戴其根,霍中洋,许轲,魏海燕,郭保卫. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨[J]. 作物学报, 2014, 40(11): 2016-2027.
[13] 褚光,周群,薛亚光,颜晓元,刘立军,杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响[J]. 作物学报, 2014, 40(07): 1245-1258.
[14] 韦还和,姜元华,赵可,许俊伟,张洪程,戴其根,霍中洋,许轲,魏海燕,郑飞. 甬优系列杂交稻品种的超高产群体特征[J]. 作物学报, 2013, 39(12): 2201-2210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!