作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1343-1352.doi: 10.3724/SP.J.1006.2015.01343
陈晨1, 孙晓丽2, 刘艾林1, 端木慧子1, 于洋1, 肖佳雷1, 朱延明1, *
CHEN Chen1, SUN Xiao-Li2, LIU Ai-Lin1, DUAN-MU Hui-Zi1, YU Yang1, XIAO Jia-Lei1, ZHU Yan-Ming1, *
摘要: 为挖掘野生大豆(Glycine soja L. G07256)耐碳酸盐关键功能基因, 利用前期高通量转录组测序数据, 从构建的碳酸盐胁迫基因表达谱中, 选取了一个碳酸盐胁迫下显著上调表达的肌醇-1-磷酸合酶类基因。采用同源克隆的方法, 获得该基因的全长cDNA, 命名为GsMIPS2。实时荧光定量PCR结果显示该基因受碳酸盐胁迫诱导表达, 并且其表达量具有组织特异性。将GsMIPS2基因转化拟南芥, 并结合拟南芥中T-DNA插入突变体atmips2来验证其耐碳酸盐功能。结果表明, 碳酸盐胁迫条件下, GsMIPS2超量表达拟南芥种子萌发率显著高于野生型, 而拟南芥突变体atmips2种子萌发率显著低于野生型。上述结果表明, GsMIPS2基因在植物应答碳酸盐胁迫过程中起重要作用。
[1] Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepisium chinense grassland in northern China. J Jpn Grassl Sci , 1991, 37: 91-99 [2] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154-158 Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas , 2005, 23(2): 154-158 (in Chinese with English abstract) [3] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol , 2009, 149: 88-95 [4] 李向华, 王克晶, 李福山, 严茂粉. 野生大豆( Glycine soja )研究现状与建议. 大豆科学, 2005, 24: 305-309 Li X H, Wang K J, Li F S, Yan M F. Research progress of wild soybean ( Glycine soja ) and suggestions for improving its effective utilization and protection. Soybean Sci , 2005, 24: 305-309 (in Chinese with English abstract) [5] Loewusa F A, Murthy P P N. Myo -inositol metabolism in plants. Plant Sci , 2000, 150: 1-19 [6] Nelson D E, Rammesmayer G, Bohnert H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell , 1998, 10: 753-764 [7] Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S, Majumde A L. Introgression of a novel salt-tolerant L- myo - inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka ( PcINO1 ) confers salt tolerance to evolutionary diverse organisms. FEBS Lett , 2006, 580: 3980-3988 [8] Patra B, Ray S, Richter A, Majumder A L. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo -inositol and methylated inositol. Protoplasma , 2010, 245: 143-152 [9] Kaur H, Verma P, Petla B P, Rao V, Saxena S C, Majee M. Ectopic expression of the ABA-inducible dehydration-responsive chickpea L- myo -inositol 1-phosphate synthase 2 ( CaMIPS2 ) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta , 2013, 237: 321-335 [10] Joshi R, Ramanarao M V, Baisakh N. Arabidopsis plants constitutively overexpressing a myo -inositol 1-phosphate synthase gene ( SaINO1 ) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem , 2013, 65: 61-66 [11] Hegeman C E, Good L L, Grabau E A. Expression of D- myo -inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol , 2001, 125: 1941-1948 [12] Kido E A, Ferreira Neto J R, Silva R L, Belarmino L C, Bezerra Neto J P, Soares-Cavalcanti N M, Pandolfi V, Silva M D, Nepomuceno A L, Benko-Iseppon A M. Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinform , 2013, 14(suppl) 1: S7 [13] Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem , 2008, 379: 127-129 [14] Nour-Eldin H H, Hansen B G, Norholm M H, Jensen J K, Halkier B A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucl Acids Res , 2006, 34: e122 [15] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J , 1998, 16:735-743 [16] Lu B B, Du Z, Ding R X, Zhang L, Yu X J, Liu C H, Chen W S. Cloning and characterization of a differentially expressed phenylalanine ammonialyse gene ( liPAL ) after genome duplication from tetraploid Isatis indigotica fort. J Integr Plant Biol , 2006, 48: 1439-1449 [17] Cui M, Liang D, Wu S, Ma F W, Lei Y S. Isolation and developmental expression analysis of L- myo -inositol-1-phosphate synthase in four Actinidia species. Plant Physiol Biochem , 2013, 73: 351-358 [18] Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed , 2008, 127: 256-261 [19] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot , 2005, 54: 8-21 [20] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na 2 CO 3 ) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. plants. Acta Bot Sin , 1993, 3: 144-149 [21] Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, Hait N C, Das K P, Majumder A L. A novel salt-tolerant L- myo - inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem , 2004, 279: 28539-28552 [22] Ghosh Dastidar K, Maitra S, Goswami L, Roy D, Das K P, Majumder A L. An insight into the molecular basis of salt tolerance of L- myo -inositol 1-P synthase ( PcINO1 ) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol , 2006, 140: 1279-1296 [23] Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H. Global transcriptome profiling of wild soybean ( Glycine soja ) roots under NaHCO 3 treatment. BMC Plant Biol , 2010, 10: 153 [24] Johnson M D, Sussex I M. 1L- myo -inositol 1-phosphate synthase from Arabidopsis thaliana . Plant Physiol , 1995, 107: 613-619 [25] Wongkaew A, Nakasathien S, Srinives P. Isolation and characterization of D- myo -inositol-3-phosphate synthase from mungbean ( Vigna radiata ). Plant Mol Biol Rep , 2009, 28: 122-127 [26] Majumdera A L, Johnsonb M D, Henry S A. 1L- myo -inositol- 1-phosphate synthase. Biochim Biophys Acta , 1997, 1348: 245-256 [27] Zhu D, Li R, Liu X, Sun M, Wu J, Zhang N, Zhu Y. The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS One , 2014, 9: e111984 [28] Yoshida K T, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S. Temporal and spatial patterns of accumulation of the transcript of myo -inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol , 1999, 119: 65-72 [29] Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma P K, Chattopadhyay D. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum . Plant Physiol , 2004, 135: 1608-1620 [30] Raboy V. Myo -inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry , 2003, 64: 1033-1043 [31] Saxena S C, Salvi P, Kaur H, Verma P, Petla B P, Rao V, Kamble N, Majee M. Differentially expressed myo -inositol monophosphatase gene ( CaIMP ) in chickpea ( Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot , 2013, 64: 5623-5639 |
[1] | 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049. |
[2] | 朱娉慧**,陈冉冉**,于洋,宋雪薇,李慧卿,杜建英,李强,丁晓东,朱延明*. 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析[J]. 作物学报, 2017, 43(09): 1319-1327. |
[3] | 王吴彬,何庆元,杨红燕,向仕华,邢光南,赵团结,盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析[J]. 作物学报, 2013, 39(07): 1155-1163. |
[4] | 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788. |
[5] | 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽. 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析[J]. 作物学报, 2011, 37(08): 1351-1359. |
[6] | 肖鑫辉, 李向华, 刘洋, 张应, 王克晶. 高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异[J]. 作物学报, 2011, 37(07): 1289-1300. |
[7] | 王希,李勇,朱延明,柏锡,才华,纪巍. 野生大豆胁迫应答膜联蛋白基因的克隆及胁迫耐性分析[J]. 作物学报, 2010, 36(10): 1666-1673. |
[8] | 樊金萍;柏锡;李勇;纪巍;王希;才华;朱延明. 野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析[J]. 作物学报, 2008, 34(09): 1581-1587. |
[9] | 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析 II. 优异等位变异的发掘[J]. 作物学报, 2008, 34(08): 1339-1349. |
[10] | 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析 I. 群体结构及关联标记[J]. 作物学报, 2008, 34(07): 1169-1178. |
[11] | 张跃强;关荣霞;刘章雄;常汝镇;姚源松;邱丽娟. 利用大豆核心种质部分样本鉴定28K和30K过敏蛋白缺失材料[J]. 作物学报, 2006, 32(03): 324-329. |
[12] | 李福山;李向华. 野生大豆在自然界中光温反应的规律[J]. 作物学报, 2003, 29(05): 670-675. |
[13] | 董英山;庄炳昌;赵丽梅;孙寰;张明;何孟元. 中国野生大豆遗传多样性中心[J]. 作物学报, 2000, 26(05): 521-527. |
[14] | 盖钧镒;许东河;高忠;岛本义也;阿部纯;福士泰史;北岛俊二. 中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究[J]. 作物学报, 2000, 26(05): 513-520. |
[15] | 杨光宇;郑惠玉;韩春凤. 栽培大豆(G.max)×半野生大豆(G.gracilis)后代主要农艺性状遗传参数的初步分析[J]. 作物学报, 1992, 18(06): 439-446. |
|