欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1353-1360.doi: 10.3724/SP.J.1006.2015.01353

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油菜乙酰乳酸合酶突变体S638N的酶学特性及其对ALS类除草剂的抗性

胡茂龙, 浦惠明*, 龙卫华, 高建芹, 戚存扣, 张洁夫, 陈松   

  1. 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花与油菜重点实验室 / 国家油料作物改良中心南京分中心, 江苏南京210014
  • 收稿日期:2015-01-05 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 浦惠明, E-mail:puhuiming@126.com, Tel: 025-84390370
  • 作者简介:第一作者联系方式: E-mail:humolon@163.com, Tel: 025-84390375
  • 基金资助:
    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A10403), 国家自然科学基金项目(31101174)和江苏省农业科学院基本科研业务专项[ZX(15)1004]资助

Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica napus and Its Resistance to ALS Inhibitor Herbicides

HU Mao-Long, PU Hui-Ming*, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture / Nanjing Sub-center of National Center of Oil Crops Improvement, Nanjing 210014, China
  • Received:2015-01-05 Published:2015-09-12 Published online:2015-09-12

摘要: 在对油菜抗咪唑啉酮类除草剂基因BnALS1R克隆与功能验证基础上, 为比较抗性基因编码的乙酰乳酸合酶突变体S638N酶学特性及其对ALS类除草剂抗性与野生型的差异, 构建基因原核表达载体, 在大肠杆菌中表达S638N和野生型的重组融合蛋白。SDS-PAGE和Western blot分析表明, S638N和野生型均能表达出约74 kD的特异性重组蛋白。纯化目的蛋白, 在不同温度和pH条件下, 测定S638N和野生型的酶活性。结果显示, 温度和pH对突变酶活性的影响与野生型相同, 表现为先升后降, 在37℃、pH 7.0条件下催化活性均最高。同时, 该突变酶的酶学动力学参数KmVmax与野生型没有显著差异, 其对3个辅助因子的响应曲线也与野生型类似, 缺少其中任何一个辅助因子均使突变酶S638N基本都没有活性。然而, 突变酶S638N对IMI类除草剂抗性显著高于野生型, 而对Su类除草剂敏感性和野生型相同。因此, 突变酶S638N具有对IMI类除草剂的专一抗性, 但未改变酶学反应特征。

关键词: 油菜, 咪唑啉酮类除草剂, 乙酰乳酸合酶, S638N, 除草剂抗性

Abstract: Acetolactate synthase (ALS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. A BnALS1R gene from herbicide-resistant mutant line M9 in B. napus, was previously isolated and demonstrated to be resistant to the imidazolinone (IMI) herbicides. This research was to reveal the differences of enzymatic characteristics and its resistance to ALS inhibitor herbicides between the mutant S638N and the wild-type enzyme. The BnALS1R gene was constructed and expressed in Escherichia coli along with the wild-type. The target recombinant proteins with the predicted molecular weight (74 kD) were successively expressed in Escherichia coli and purified by SDS-PAGE. The enzymatic activity of the purified S638N and wild-type was then measured in enzyme reaction systems under different temperatures and pH values. Results showed that the S638N resembled the wild-type in their enzymatic activity, showing maximum activity at 37°C and pH 7.0, and no significant difference in the Km and Vmax between the S638N and wild-type. The activation of the S638N by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined and generated similar results to that of the wild-type. The mutant enzyme was inactive when one of three cofactors was omitted. However, the S638N was more resistant to IMI herbicides than the wild-type in contrast to Su herbicides that inhibited the S638N as well as the wild-type. Therefore, the S638N has resistance specific to IMI herbicides with unalteration of the enzymatic reaction characteristics.

Key words: Rapeseed (Brassica napus L.), Imidazolinone herbicides, Acetolactate synthase, S638N, Herbicide-resistance

[1] McCourt J A, Duggleby R G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids , 2006, 31: 173-210
[2] Tan S, Evans R R, Dahmer M L, Bijay K S, Dale L S. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci , 2005, 61: 246-257
[3] McCourt J A, Pang S S, King-Scott J, Guddat L W, Duggleby R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA , 2006, 103: 569-573
[4] Chipman D M, Duggleby R G, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol , 2005, 9: 475-481
[5] Chipman D, Barak Z, Schloss J V. Biosynthesis of 2-aceto-2- hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta , 1998, 1385: 401-419
[6] Duggleby R G. Domain relationships in thiamine diphosphate- dependent enzymes. Acc Chem Res , 2006, 39: 550-557
[7] Lee H, Sachin R, Neeraj K, Burkea I, Yenisha J P, Gilla K S, Wettsteina D V, Steven E U. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA , 2011, 108: 8909-8913
[8] Carlos A S, Mariano B, Mariel E, Sherry R, Ascenzi W R. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet , 2008, 118: 105-112
[9] Carlos A S, Mariano B. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sun?ower. Theor Appl Genet , 2012, 124: 355-364
[10] Carlos A. S, Mariano B, Emiliano A, Brigitte W. Response to imazapyr and dominance relationships of two imidazolinone- tolerant alleles at the Ahasl1 locus of sun?ower. Theor Appl Genet , 2012, 124: 385-396
[11] Hattori J, Brown D, Mourad G, Labbe H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B. An acetohydroxyacid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet , 1995, 246: 419-425
[12] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012, 45: 4326-4334 Hu M L, Pu H M, Gao J Q, Long W H, Qi C K, Zhang J F, Chen S. Inheritance and gene cloning of an ALS inhabiting herbicide-resistant mutant line M9 in Brassica napus . Sci Agric Sin , 2012, 45: 4326-4334 (in Chinese with English abstract)
[13] Walter K L, Strachan S D, Ferry N M, Albert H H, Castle L A, Sebastian S A. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag Sci , 2014, 70: 1831-1839
[14] Ghio C, Ramos M L, Altieri E, Bulos M, Sala C A. Molecular characterization of Als1 , an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean. Theor Appl Genet , 2013, 126: 2957-2968
[15] Li H, Li J, Zhao B, Wang J, Yi L, Liu C, Wu J, King G J, Liu K. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed ( Brassica napus ) for hybrid seed production using chemically induced male sterility. Theor Appl Genet , 2015, 128: 107-118
[16] Thompson C, Tar’an B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea ( Cicer arietinum L.). Theor Appl Genet , 2014, 127: 1583-1591
[17] Li D, Barclay I, Jose K, Stefanova K, Appels R. A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection. Mol Breed , 2008, 22: 217-225
[18] Duggleby R G, McCourt J A, Guddat L W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem , 2008, 46: 309-324
[19] Ott K H, Kwagh J G, Stockton G W, Sidorov V, Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol , 1996, 263: 359-368
[20] Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetohydroxyacid synthase. J Biol Chem , 1995, 270: 17381-17385
[21] Subramanian M V, Hung H Y, Dias J M, Miner V W, Butler J H, Jachetta J J. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol , 1990, 94: 239-244
[22] Chang A K, Duggleby R G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J , 1998, 333: 765-777
[23] Lee Y T, Chang A K, Duggleby R G. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett , 1999, 452: 341-345
[24] Chang A K, Duggleby R G. Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J , 1997, 327: 161-169
[25] 浦惠明, 高建芹, 龙卫华, 胡茂龙, 张洁夫, 陈松, 陈新军, 陈锋, 顾慧, 付三雄, 戚存扣. 油菜抗咪唑啉酮性状的遗传及其应用. 中国油料作物学报, 2011, 33: 15-19 Pu H M, Gao J Q, Long W H, Hu M L, Zhang J F, Chen S, Chen X J, Chen F, Gu H, Fu S X, Qi C K. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin J Oil Crop Sci , 2011, 33: 15-19 (in Chinese with English abstract)
[26] 胡茂龙, 孔令娜, 龙卫华, 高建芹, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜乙酰羟基酸合酶基因 BnAHAS1 的克隆及其重组蛋白质的原核表达. 江苏农业学报, 2014, 30: 986-991 Hu M L, Kong L N, Long W H, Gao J Q, Pu H M, Qi C K, Zhang J F, Chen S. Cloning of the BnAHAS1 gene from Brassica napus and prokaryotic expression of its recombinant protein in Escherichia coli . Jiangsu J Agric Sci , 2014, 30: 986-991 (in Chinese with English abstract)
[27] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem , 1976, 72: 248-254
[28] Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Ann Biochem , 1988, 171: 173-179
[29] Seefeldt S S, Jensen J E, Fuerst E P. Log-logistic analysis of herbicide dose response relationships. Weed Technol , 1995, 9: 218-227
[30] Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech , 2006, 17: 353-358
[31] Waugh D S. Making the most of affinity tags. Trends Biotech , 2005, 23: 316-320
[32] Chong C K, Choi J D. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem Biophys Res Commun , 2000, 279: 462-467
[33] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 胡茂龙, 陈松, 陈新军, 陈锋, 顾慧. 抗咪唑啉酮油菜种质的发现与鉴定. 植物遗传资源学报, 2010, 11: 369-373 Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H. Identification of imidazolidone- resistant oilseed rape mutant. J Plant Genet Resour , 2010, 11: 369-373 (in Chinese with English abstract)
[34] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因 BnALS1R 等位基因特异PCR标记的开发与应用. 作物学报, 2013, 39: 1711-1719 Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K, Zhang J F, Chen S. Development and application of allele-specific PCR marker for the imidazolinone-resistant gene BnALS1R in Brassica napus . Acta Agron Sin , 2013, 39: 1711-1719 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!