欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 849-854.doi: 10.3724/SP.J.1006.2017.00849

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个棉花纤维伸长期优势表达启动子pGhFLA1的克隆与鉴定

胡海燕,刘迪秋,李允静,李阳,涂礼莉*   

  1. 华中农业大学作物遗传改良国家重点实验室,湖北武汉430070
  • 收稿日期:2016-08-08 修回日期:2017-01-21 出版日期:2017-06-12 网络出版日期:2017-02-17
  • 通讯作者: 涂礼莉, E-mail: lilitu@mail.hzau.edu.cn, Tel: 027-87283955
  • 基金资助:

    本研究由国家自然科学基金项目(31071465)资助。

Identification of Promoter GhFLA1 Preferentially Expressed during Cotton fiber Elongation

HU Hai-Yan,LIU Di-Qiu,LI Yun-Jing,LI Yang,TU Li-Li*   

  1. National Key Laboratory of Crop Genetic Improvement / Huazhong Agricultural University, Wuhan 430070, China
  • Received:2016-08-08 Revised:2017-01-21 Published:2017-06-12 Published online:2017-02-17
  • Contact: 涂礼莉, E-mail: lilitu@mail.hzau.edu.cn, Tel: 027-87283955
  • Supported by:

    This work supported by the National Natural Science Foundation of China (31071465).

摘要:

棉花纤维是研究单细胞生长发育的良好模式细胞, 寻找在棉花纤维发育时期优势表达的启动子,对于棉花纤维发育的功能基因组研究非常重要。本试验对发掘到的一个在纤维伸长期优势表达基因GhFLA1的启动子进行克隆,并将该启动子融合GUS转化棉花和烟草。转基因棉花的GUS蛋白染色表明,在0~20 DPA (days post anthesis)的纤维中检测到GUS蛋白,同时在柱头、雄蕊、萼片、胚根、子叶和根中也检测到GUS蛋白,但在花瓣、叶片和苞叶中没有检测到。同时GUS定量检测结果显示,pGhFLA1驱动GUS蛋白积累的高峰是在20 DPA的纤维中,其驱动GUS表达的能力是CaMV 35S::GUS的22倍。转基因烟草组织化学染色显示pGhFLA1可以驱动GUS在叶片及叶片的表皮毛中优势表达,同时在子房、柱头、花药、苞叶、花柄基部、花瓣、种子等生殖器官上也存在GUS蛋白。启动子pGhFLA1在棉花纤维和烟草叶片的表皮毛中优势表达,可用于棉花纤维功能基因组研究,在改良纤维品质育种中具有潜在的应用价值。

关键词: 棉花(Gossypium hirsutum L.), GhFLA1, 启动子, 纤维

Abstract:

Cotton (Gossypium hirsutum L.) fiber is a perfect model cell for studying cell initiation and growth, so it is critical to find new promoters specifically or preferentially expressed in fiber for functional genomics of fiber and improvement of cotton fiber yield and quality. We found a gene GhFLA1 with very high expression level in fiber elongation stage and cloned its promoter (pGhFLA1). pGhFLA1::GUS was transferred into cotton YZ1 (Gossypium hirsutum) and tobacco (Nicotiana tabacum) to identify its expression pattern in different plant tissues. GUS activity in transgenic plant was obviously detected in fiber from 0 DPA (days post anthesis) to 20 DPA, also in stamens, pistils, sepal, radicle, cotyledon and root, but not in petal, leaf and bract. Quantitative analysis of GUS activity showed that GUS expression level driven by pGhFLA1 was highest in 20 DPA fiber and 22-fold higher than that in CaMV 35S. In transgenic tobacco, GUS activity was detected in leaf and trichome and reproductive organs like ovary, stigma, anther, bract, petal and seed. In general, the promoter pGhFLA1 fusion with GUS highly expresses in cotton fiber and tobacco trichome, which could be used in fiber functional genomics research and improvement of cotton fiber quality.

Key words: Cotton (Gossypium hirsutum L.), GhFLA1, Promoter, Fiber

[1]Haigler C H, Betancur L, Stiff M R, Tuttle J R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci, 2012, 3: 104 [2]Ren M, Chen Q, Li L, Zhang R, Guo S. Functional analysis of a reproductive organ predominant expressing promoter in cotton plants. Sci China C Life Sci, 2005, 48: 452–459 [3]John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proc Natl Acad Sci USA, 1992, 89: 5769–5773 [4]Rinehart J A, Petersen M W, John M E. Tissue specific and developmental regulation of cotton gene FbL2A. Plant Physiol, 1996, 112: 1331–133 [5]Ma D P, Tan H, Si Y. Differential expression of a lipid transfer protein gene in cotton fiber. Biochim Biophys Acta, 1995, 1257: 81–84 [6]Ma D P, Liu H C, Tan H. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells. Biochim Biophys Acta, 1997, 1344: 111–114 [7]Liu H C, Creech R G, Jenkins J N. Cloning and promoter analysis of cotton lip transfer protein gene ltp3. Biochim Biophys Acta, 2000, 1487: 106–111 [8]Hsu C Y, Greech R G, Jenkins J N. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci, 1999, 143: 63–70 [9]Delaney S K, Orford S J, Martin-Harris M. The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-Rich promoter region and the AT-Hook transcription factor GhAT1. Plant Cell Physiol, 2007, 48: 1426–1437 [10]Li Y, Tu L L, Ye Z X, Wang M J, Gao W H, Zhang X L. A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep, 2015, 34: 1539–1549 [11]侯磊, 刘灏, 李家宝, 杨霞, 肖月华, 罗明, 宋水清, 杨光伟, 裴炎. 一个具有棉花纤维细胞特异性的启动子SCFP. 科学通报, 2008, 53: 1650–1656 Hou L, Liu H, Li J B, Yang X, Xiao Y H, Luo M, Song S Q, Yang G W, Pei Y. A cotton fiber specific promoter SCFP. Sci China Press, 2008, 53: 1650–1656 (in Chinese) [12]Chen J, Burke J J. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton. PloS One, 2015, 10: e0129870 [13]Deng F L, Tu L L, Tan J F, Li Y, Nie Y C, Zhang X L. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol, 2012,158: 890–904 [14]Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J, 2007, 51: 419–430 [15]罗凤涛. 五个异源启动子在烟草与棉花中的表达特性研究. 西南大学硕士学位论文, 重庆, 2008 Luo F T. Expression Pattern of Five Heterogenous Promoters in Tobacco and Cotton. MS Thesis of Southwest University, Chongqing, China, 2008 (in Chinese with English abstract) [16]Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol, 2011, 29: 453–458 [17]Liu D Q, Tu L L, Li Y J, Wang L, Zhu L F, Zhang X L. Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Mol Biol Rep, 2008, 26: 98–113 [18]刘迪秋. 陆地棉纤维特异表达基因的克隆与表达研究. 华中农业大学博士学位论文, 湖北武汉, 2007 Liu D Q. Molecular Cloning and Expression Analysis of The Genes Specifically Expressed in Gossypium hirsutum during Fiber Development. PhD Dissertation of Huazhong Agriculture University, Wuhan, China, 2007 (in Chinese with English abstract) [19]Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant, 2006, 50: 519–524 [20]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6: 3901–3907 [21]Guan X, Yu N, Shangguan X, Wang S, Lu S, Wang L, Chen X. Arabidopsis trichome research sheds light on cotton fiber development mechanisms. Chin Sci Bull, 2007, 52: 1734–1741 [22]Wu A M, Ling C, Liu J Y. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006, 163: 426–435 [23]Wu A M, Lv S Y, Liu J Y. Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos. Cell Res, 2007, 17: 174–183 [24]Wu A M, Hu J S, Liu J Y. Functional analysis of a cotton cellulose synthase A4 gene promoter in transgenic tobacco plants. Plant Cell Rep, 2009, 28: 1539–1548 [25]Ho M H, Saha S, Jenkins J N, Ma D P. Characterization and promoter analysis of a cotton RING-type ubiquitin ligase (E3) gene. Mol Biotechnol, 2010, 46: 140–148 [26]Shangguan X X, Xu B, Yu Z X, Wang L J, Chen X Y. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot, 2008, 59: 3533–3542 [27]孙乃恩, 孙东旭, 朱德熙. 分子遗传学. 南京: 南京大学出版社, 1999. pp 189–198 Sun N E, Sun D X, Zhu D X. Molecular Genetics. Nanjing: Nanjing University Press, 1999. pp189–198 (in Chinese) [28]Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell, 1992, 70: 375–387 [29]Yuan T, Li X H, Xiao J H, Wang S P. Characterization of xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol Plant, 2011, 4: 300–309 [30]Wu X L, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21–30 [31]Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci, 2004, 166: 941–948 [32]Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol, 2013, 161: 1278–1290 [33]Viana A A, Fragoso R R, Guimaraes L M, Pontes N, Oliveira-Neto O B, Artico S, Nardeli S M, Alves-Ferreira M, Batista J A, Silva M C, Grossi-de-Sa M F. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues. BMC Biotechnol, 2011, 11: p 115

[1] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247.
[4] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[5] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769.
[6] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[7] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
[8] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[9] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[10] 田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定[J]. 作物学报, 2020, 46(9): 1388-1397.
[11] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[12] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[13] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[14] 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318.
[15] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!