欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1357-1369.doi: 10.3724/SP.J.1006.2017.01272

• 耕作栽培·生理生化 • 上一篇    下一篇

不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响

林祥,王东*   

  1. 山东农业大学 / 作物生物学国家重点实验室 / 农业部作物生理生态与耕作重点实验室,山东泰安 271018
  • 收稿日期:2016-09-26 修回日期:2017-04-19 出版日期:2017-09-12 网络出版日期:2017-05-23
  • 通讯作者: 王东, E-mail: wangd@sdau.edu.cn, Tel: 0538-8240096
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费(201503130)和国家自然科学基金项目(31271660)资助。

Effects of Supplemental Irrigation on Water Consumption Characteristics, Grain Yield and Water Use Efficiency in Winter Wheat under Different Soil Moisture Conditions at Seeding Stage

LIN Xiang,WANG Dong*   

  1. Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Tai’an 271018, China
  • Received:2016-09-26 Revised:2017-04-19 Published:2017-09-12 Published online:2017-05-23
  • Contact: wang dong, E-mail: wangd@sdau.edu.cn, Tel: 0538-8240096
  • Supported by:

    Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Tai’an 271018, China

摘要:

我国黄淮平原水资源紧缺,而且年际间降水量及其时间分布存在较大差异,探明不同底墒条件下补充灌溉对冬小麦产量和水分利用效率的调节效应及其生理基础,可为该地区冬小麦节水高产栽培提供理论和技术支持。2013201420142015年冬小麦生长季,在播种期0~100 cm土层土壤贮水量分别为201.5 (A)266.3 (B)317.0 mm (C)3种底墒条件下,各设置4个补灌水处理,包括不灌水、拔节期+开花期补灌、越冬期+拔节期+开花期补灌、播种期+拔节期+开花期补灌,研究不同处理冬小麦耗水特性、旗叶光合、干物质积累与分配、产量及水分利用效率的差异。结果表明,冬小麦生育期总耗水量和土壤水消耗量均随播种期底墒的提高而增加。在底墒AB条件下,冬小麦主要消耗降水和灌溉水。提高播种期补灌水平或于越冬期补灌,冬小麦在底墒A条件下对土壤水的消耗量显著增加,在底墒B条件下对土壤水的消耗量显著减少。在底墒C条件下,冬小麦耗水以土壤水为主,其次为降水,再次为灌溉水;播种期或越冬期补灌显著增加生育期总耗水量,对土壤水消耗量则无显著影响。于播种期、拔节期和开花期补灌,冬小麦在底墒A条件下可获得较高的籽粒产量,但水分利用效率较低;在底墒B条件下籽粒产量和水分利用效率均较高;在底墒C条件下,仅于拔节期和开花期补灌即可获得高产和高水分利用效率,播种期和越冬期无需补灌。综上所述,播前底墒是实施冬小麦合理补灌的重要依据。

关键词: 底墒, 补灌, 耗水特性, 干物质积累与分配, 籽粒产量

Abstract:

Water shortage and unbalanced precipitation distribution are major problems threatening agricultural sustainability, especially winter wheat production, in the Huang-Huai Plain of China and water-saving cultivation with limited irrigation is a promising technique in this area. It is important to understand the regulation effect and physiological basis of supplemental irrigation on grain yield and water use efficiency (WUE) of winter wheat under different soil moisture conditions at seeding stage. In the 2013–2014 and 2014–2015 winter wheat growing seasons, we designed three soil (0–100 cm) moisture conditions at seeding stage (201.5 mm for A, 266.3 mm for B, and 317.0 mm for C) by supplemental irrigation and four irrigation treatments under each soil moisture condition (no-irrigation; irrigated twice at jointing and anthesis stages; irrigated thrice at over-wintering, jointing and anthesis stages; and irrigated thrice at seeding, jointing and anthesis stages). The water consumption characteristics, photosynthesis of flag leaves, dry matter accumulation and distribution, grain yield and WUE of winter wheat were investigated. The soil water consumption and the total water consumption during wheat growth increased when more soil water was available at seeding stage. Wheat mainly consumed precipitation and irrigation water under condition A and B. Supplemental irrigation at seeding or over-wintering stage resulted in significant increase of soil water consumption under condition A, but decrease of soil water consumption under condition B. Under condition C, wheat mainly consumed soil water, followed by precipitation and irrigation water. In this situation, supplemental irrigation at seeding and over-wintering stages resulted in significant increase of total water consumption but no significant effect on soil water consumption. Our results showed high yield but low WUE under condition A and high yield and high WUE under condition B, when watering at seeding, jointing and anthesis stages. Under condition C, high yield and high WUE were obtained only when watering at jointing and anthesis stages, whereas, supplemental irrigations at seeding and over-wintering stages were unnecessary. We conclude that available soil water at seeding stage is the basis and important to reasonable supplemental irrigation during wheat growth.

Key words: Available soil water at seeding stage, Supplemental irrigation, Water consumption characteristics, Dry matter accumulation and distribution, Grain yield

[1]梅旭荣, 康绍忠, 于强, 黄元仿, 钟秀丽, 龚道枝, 霍再林, 刘恩科. 协同提升黄淮海平原作物生产力与农田水分利用效率途径. 中国农业科学, 2013, 46: 1149–1157
Mei X R, Kang S Z, Yu Q, Huang Y F, Zhong X L, Gong D Z, Huo Z L, Liu E K. Pathways to synchronously improving crop productivity and field water use efficiency in the North China Plain. Sci Agric Sin, 2013, 46: 1149–1157 (in Chinese with English abstract)
[2]张雪靓, 孔祥斌. 黄淮海平原地下水危机下的耕地资源可持续利用. 中国土地科学, 2014, 28(5): 90–96
Zhang X J, Kong X B. Cropland sustainable use impacted by groundwater depletion in China’s HHH Plains. Chin Land Sci, 2014, 28(5): 90–96 (in Chinese with English abstract)
[3]刘荣花, 方文松, 朱自玺, 马志红, 许蓬蓬, 李树岩. 黄淮平原冬小麦底墒水分布规律. 生态学杂志, 2008, 27: 2105–2110
Liu R H, Fang W S, Zhu Z X, Ma Z H, Xu P P, Li S Y. Distribution pattern of available soil water at planting for winter wheat in Huanghuai Plain. Chin J Ecol, 2008, 27: 2105–2110 (in Chinese with English abstract)
[4]徐建文, 居辉, 梅旭荣, 刘勤, 杨建莹. 近30年黄淮海平原干旱对冬小麦产量的潜在影响模拟. 农业工程学报, 2015, 31(6): 150–158
Xu J W, Ju H, Mei X R, Liu Q, Yang J Y. Simulation on potential effects of drought on winter wheat in Huang-Huai-Hai Plain from 1981 to 2010. Trans Chin Soc Agric Eng, 2015, 31(6): 150–158 (in Chinese with English abstract)
[5]罗俊杰, 黄高宝. 底墒对旱地冬小麦产量和水分利用效率的影响研究. 灌溉排水学报, 2009, 28(3): 102–104
Luo J J, Huang G B. Effects of different soil water before sowing on winter wheat yield and WUE in semi-arid areas. J Irrig Drain, 2009, 28(3): 102–104 (in Chinese with English abstract)
[6]罗俊杰, 王勇, 樊廷录. 旱地不同生态型冬小麦水分利用效率对播前底墒的响应. 干旱地区农业研究, 2010, 28(1): 61–65
Luo J J, Wang Y, Fan T L. Effect of winter wheat yield and WUE with different soil water before sowing in semi-arid areas. Agric Res Arid Areas, 2010, 28(1): 61–65 (in Chinese with English abstract)
[7]姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015, 48: 2379–2389
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region, Sci Agric Sin, 2015, 48: 2379–2389 (in Chinese with English abstract)
[8]褚鹏飞, 王东, 张永丽, 王小燕, 王西芝, 于振文. 灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响. 中国农业科学, 2009, 42: 1306–1315
Chu P F, Wang D, Zhang Y L, Wang X Y, Wang X Z, Yu Z W. Effects of irrigation stage and amount on water consumption characteristics, grain yield and content of protein components of wheat. Sci Agric Sin, 2009, 42: 1306–1315 (in Chinese with English abstract)
[9]Li Q Q, Dong B D, Qiao Y Z, Liu M Y, Zhang J W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric Water Manag, 2010, 97: 1676–1682
[10]秦耀东. 土壤物理学. 北京: 高等教育出版社, 2003. p 7
Qin Y D. Soil Physics. Beijing: Higher Education Press, 2003. p 7 (in Chinese)
[11]Wang D, Yu Z W, White P J. The effect of supplemental irrigation after jointing on leaf senescence and grain ?lling in wheat. Field Crops Res, 2013, 151: 35–44
[12]Gardner W H. Water content. In: Klute, A. Eds. Methods of Soil Analysis: Part 1. Agronomy Monograph. 9. 2nd edn. Verlag Amer. Soc. Agron. und Soil Sci. Soc. Amer, Madison (Wisconsin), 1986. pp 493–544
[13]黄玲, 高阳, 邱新强, 李新强, 申孝军, 孙景生, 巩文军, 段爱旺. 灌水量和时期对不同品种冬小麦产量和耗水特性的影响. 农业工程学报, 2013, 29(14): 99–108
Huang L, Gao Q, Qiu X Q, Li X Q, Shen X J, Sun J S, Gong W J, Duan A W. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars. Trans CSAE, 2013, 29(14): 99–108 (in Chinese with English abstract)
[14]Lv L H, Wang H J, Jia X L,Wang Z M. Analysis on water requirement and water-saving amount of wheat and corn in typical regions of the North China Plain. Front Agric China, 2012, 5: 556–562
[15]Chattaraj S, Chakraborty D, Garg R N, Singh G P, Gupta V K, Singh S, Singh R. Hyperspectral remote sensing for growth-stage-specific water use in wheat. Field Crops Res, 2013, 144: 179–191
[16]田中伟, 王方瑞, 戴廷波, 蔡剑, 姜东, 曹卫星. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45: 801–808
Tian Z W, Wang F R, Dai T B, Cai J, Jiang D, Cao W X. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield. Sci Agric Sin, 2012, 45: 801–808 (in Chinese with English abstract)
[17]Sepaskhah A R, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric Water Manag, 2012, 112: 55–62
[18]Ma Y, Feng S Y, Song X F. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain. Agric Water Manag, 2013, 127: 13–24
[19]王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27–32
Wang S F, Zhang X Y, Pei D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE, 2006, 22(2): 27–32 (in Chinese with English abstract)
[20]Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron, 2008, 28: 138–147
[21]董浩, 陈雨海, 周勋波. 灌溉和种植方式对冬小麦耗水特性及干物质生产的影响. 应用生态学报, 2013, 24: 1871–1878
Dong H, Chen Y H, Zhou X B. Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production. Chin J Appl Ecol, 2013, 24: 1871–1878 (in Chinese with English abstract)
[22]Bahrani A, Abad H H S, Aynehband A. Nitrogen remobilization in wheat as influenced by nitrogen application and post-anthesis water deficit during grain filling. Afr J Biotechnol, 2011, 10: 10585v10594
[23]黄彩霞, 柴守玺, 赵德明, 康燕霞. 灌溉对干旱区冬小麦干物质积累、分配和产量的影响. 植物生态学报, 2014, 38: 1333–1344
Huang C X, Chai S X, Zhao D M, Kang Y X. Effects of irrigation on accumulation and distribution of dry matter and grain yield in winter wheat in arid regions of China. Chin J Plant Ecol, 2014, 38: 1333–1344 (in Chinese with English abstract)
[24]Schilinger W F, Schofstoll S E, Alldredge J R. Available water and wheat grain yield relations in a Mediterranean climate. Field Crop Res, 2008, 109: 45–49
[25]任三学, 赵花荣, 郭安红, 刘庚山, 安顺清. 底墒对冬小麦植株生长及产量的影响. 麦类作物学报, 2005, 25(4): 79–85
Ren S X, Zhao H R, Guo A H, Liu G S, An S Q. Impact of available soil water at planting on plant growth and yield of winter wheat. J Triticeae Crops, 2005, 25(4): 79–85 (in Chinese with English abstract)
[26]张永平, 王志敏, 王璞, 赵明. 冬小麦节水高产栽培群体光合特征. 中国农业科学, 2003, 36: 1143–1149
Zhang Y P, Wang Z M, Wang P, Zhao M. Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin, 2003, 36: 1143–1149 (in Chinese with English abstract)
[27]Li J M, Inanaga S, Li Z H, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manag, 2005, 76: 8–23
[28]刘超, 汪有科, 张立强. 土壤水分特征曲线在作物非充分灌溉适宜水分下限确定中的应用. 灌溉排水学报, 2007, 26(6): 76–78
Liu C, Wang Y K, Zhang L Q. The application of soil water characteristic curve in determination of lower limit of suitable soil moisture in crop non-sufficient irrigation. J Irrig Drain, 2007, 26(6): 76–78 (in Chinese with English abstract)
[29]张富仓, 李志军, 康绍忠. 用热电偶湿度计测定土壤水势的方法研究. 西北农林科技大学(自然科学版), 2001, 29(1): 55–58
Zhang F C, Li Z J, Kang S Z. Measurement of soil water potential with thermocouple psychrometers. J Northwest Sci-Tech Univ Agric & For (Nat Sci Edn), 2001, 29(1): 55–58 (in Chinese with English abstract)
[30]熊毅, 李庆逵. 中国土壤. 北京: 科学出版社, 1978. pp 329–335
Xiong Y, Li Q K. China Soil. Beijing: Science Press, 1978. pp 329–335 (in Chinese)
[31]王德梅, 于振文, 许振柱. 高产条件下不同小麦品种耗水特性和水分利用效率的差异. 生态学报, 2009, 29: 6552–6560
Wang D M, Yu Z W, Xu Z Z. Water consumption characteristics and water use efficiency of different wheat cultivars with high yield. Acta Ecol Sin, 2009, 29: 6552–6560 (in Chinese with English abstract)

[1] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[2] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[3] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
[4] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[5] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[6] 黄鑫,李耀光,孙婉,侯俊峰,马英,张剑,马冬云,王晨阳,郭天财. 不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥的响应[J]. 作物学报, 2018, 44(10): 1506-1516.
[7] 冯福学,慕平,赵桂琴,柴继宽,刘欢,陈国栋. 西北绿洲灌区水氮耦合对燕麦品种陇燕3号耗水特性及产量的影响[J]. 作物学报, 2017, 43(09): 1370-1380.
[8] 吴晓丽,李朝苏,汤永禄,李俊,马孝玲,李式昭,黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性[J]. 作物学报, 2017, 43(07): 1043-1056.
[9] 杨传邦,于振文,张永丽*,石玉. 测墒补灌深度对济麦22冠层光截获和荧光特性及籽粒产量的影响[J]. 作物学报, 2017, 43(02): 253-262.
[10] 宋兆云,赵阳,王东*,谷淑波. 拔节期补灌对两种土壤质地上冬小麦旗叶衰老特性和籽粒产量的影响[J]. 作物学报, 2016, 42(12): 1834-1843.
[11] 谢迎新,靳海洋,李梦达,翟羽雪,王永华,谢耀丽,李向东,夏来坤,王晨阳,郭天财,贺德先. 周年耕作方式对砂姜黑土农田土壤养分及作物产量的影响[J]. 作物学报, 2016, 42(10): 1560-1568.
[12] 滕园园**,赵财**,柴强*,胡发龙,冯福学 . 氮肥后移对玉米间作豌豆耗水特性的调控效应[J]. 作物学报, 2016, 42(03): 446-455.
[13] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[14] 田中伟,樊永惠,殷美,王方瑞,蔡剑,姜东,戴廷波*. 长江中下游小麦品种根系改良特征及其与产量的关系[J]. 作物学报, 2015, 41(04): 613-622.
[15] 赵亚丽,郭海斌,薛志伟,穆心愿,李潮海*. 耕作方式与秸秆还田对冬小麦–夏玉米轮作系统中干物质生产和水分利用效率的影响[J]. 作物学报, 2014, 40(10): 1797-1807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!