欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 253-262.doi: 10.3724/SP.J.1006.2017.00253

• 耕作栽培·生理生化 • 上一篇    下一篇

测墒补灌深度对济麦22冠层光截获和荧光特性及籽粒产量的影响

杨传邦,于振文,张永丽*,石玉   

  1. 山东农业大学农学院/农业部作物生理生态与耕作重点实验室, 山东泰安271018
  • 收稿日期:2016-03-12 修回日期:2016-07-27 出版日期:2017-02-12 网络出版日期:2016-11-28
  • 基金资助:

    本研究由山东省自然科学基金项目(ZR2016CM34), 国家自然科学基金项目(31101115)和国家现代农业产业技术体系专项(CARS-3-1-19)资助。

Effect of Soil Depth with Supplemental Irrigation on Canopy Photosynthetically Active Radiation Interception andChlorophyll Fluorescence Parameters in Jimai 22

YANG Chuan-Bang,YU Zhen-Wen,ZHANG Yong-Li*,SHI Yu   

  1. College of Agronomy, Shandong Agricultural University/Key Laboratory of Crop Eco-physiology and Cultivation,Ministry of Agriculture, Tai’an 271018, Shandong, China
  • Received:2016-03-12 Revised:2016-07-27 Published:2017-02-12 Published online:2016-11-28
  • Supported by:

    This study was supported by the Natural Science Foundation of Shandong Province(ZR2016CM34), the National Natural Science Foundation of China (31101115), and China Agriculture Research System (CARS-3-1-19).

摘要:

测墒补灌是近年开发的一种小麦节水栽培新技术,水分管理的土层深度是该技术的关键因素之一。本研究以济麦22为试验品种,于2013—2014和2014—2015年度在山东兖州进行大田试验,设置4个测墒补灌土层深度,补灌至目标土层拔节期相对含水量70%和开花期相对含水量75%,以定量灌溉(拔节期和开花期各灌水60mm)和全生育期不灌水处理为对照,通过测定花后0~30 d灌浆阶段小麦冠层光截获特性、群体光合速率、旗叶荧光特性,以及最终籽粒产量和水分利用效率,以明确测墒补灌达到增产的光合基础及最佳土层。当补灌土层为0~20 cm时,灌水量为50.1~51.2 mm,小麦叶面积指数、冠层光合有效辐射截获量、冠层光截获率和群体光合速率,以及旗叶实际光化学效率(ΦPSII)和最大光化学效率(Fv/Fm)在各灌水处理中最低;补灌土层为0~40 cm时,灌水量为73.1~93.1 mm,上述前4项指标比补灌深度20 cm时依次提高6.0%~42.4%、8.5%~27.9%、6.7%~14.5%、11.0%~14.6%,同时旗叶ΦPSIIFv/Fm亦显著提高;补灌深度加大至60cm (灌水量87.5~105.4 cm)和80cm (灌水量101.8~115.0 cm)时,这些指标无显著增加。与光合特性相关指标一致,籽粒产量也表现为补灌深度大于40 cm的3个处理间无显著差异,且与定量灌溉对照无显著差异,但都显著高于补灌深度20 cm处理。在本试验条件下,对0~40 cm土层实施测墒补灌,较定量灌溉减少用水26.9~46.9mm,水分利用效率提高16.2%~16.7%,灌溉效益增加34.0%~68.1%,说明在类似生态条件下,中穗型小麦品种济麦22测墒补灌节水栽培技术的目标土层为0~40cm。

关键词: 小麦, 冠层光截获, 荧光特性, 测墒补灌, 土层深度

Abstract:

Supplemental irrigation based on moisture measurement of soil is a water-saving technology newly developed in wheat cultivation,in which soil depth is one of the key factors. In this study, we conducted a field experiment with the high-yield variety Jimai 22 in Yanzhou, Shandong province in 2013–2014 and 2014–2015 winter wheat seasons to unravel the photosynthetic basis of high yield by supplemental irrigation in the proper soil layer. Four supplemental irrigation treatments (relative soil water content of 70% and 75% at jointing and anthesis stage, respectively) were designed with the target soil depths of 20 (T20, 40 (T40), 60 (T60), and 80 cm (T80), and no irrigation and traditionally fixed irrigation (60 mm at jointing and anthesis each) were used as the controls. The indices measured were canopy photosynthetically active radiation(PAR) interception, canopy apparent photosynthesis(CAP), and chlorophyll fluorescence parametersof flag leaves from 0 to 30 days after anthesis, as well as grain yield and water use efficiency(WUE). The leaf area index, PAR interception, canopy light interception rate, CAP of treatment T40 were 6.0–42.4%, 8.5–27.9%, 6.7–14.5%, and 11.0–14.6% higher than those of treatment T20,respectively.At the same time, the maximal quantum yield of PSII (Fv/Fm), actual efficiency of PSII (ΦPSII) of flag leaves also improved significantly. When making supplemental irrigation to 60cm and 80cm soil layers, the above parameters had no significant increase. The grain yield of treatment T40 was not significantly different from that of T60,T80 andfixed irrigation control. However, irrigation amount significantly decreased by 26.9–46.9mm, water use efficiency and irrigation benefit significantly increased by 16.2–16.7% and 34.0–68.1% respectively during both wheat growing seasons as compared with those of fixed irrigation control. Supplemental irrigation based on soil moisture measurement in 0–40 cm soil layer is the most appropriate treatment in similar ecological conditions to this study for Jimai 22wheat cultivar.

Key words: Wheat, Canopy photosynthetically active radiationinterception, Chlorophyll fluorescence parameters, Supplemental irrigation based on soil moisture measurement, Soil layers

[1]杨再洁, 陈阜, 史磊刚, 文新亚. 华北平原不同年代小麦品种旗叶光合特性对水分亏缺的响应. 作物学报, 2013, 39: 693?703
Yang Z J, Chen F, Shi LG, Wen X Y. Responses of photosynthetic characteristics of winter wheat cultivars released in different decades to water deficit in North China Plain. Acta Agron Sin, 2013, 39: 693?703 (in Chinese with English abstract)
[2]姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015, 48:2379?2389
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region. Sci Agric Sin, 2015, 48: 2379?2389 (in Chinese with English abstract)
[3]Ozturk A, Aydin F. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J AgronCropSci, 2004, 190: 93?99
[4]Li Q Q, Zhou X B, Chen Y H, Yu S L. Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime. Agric Water Manag, 2012, 105:8?12
[5]Li Q Q, Dong B D, Qiao Y Z, Liu M Y, Zhang J W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric Water Manag, 2010, 97: 1676?1682
[6]Liu X W, Shao L W, Sun H Y, Chen S Y, Zhang X Y. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat. Agric Water Manag, 2013, 129: 173?180
[7]Jiang J, Huo Z L, Feng S Y, Zhang C B. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Res, 2012, 137: 78?88
[8]张胜全, 方保停, 张英华, 周顺利, 王志敏. 冬小麦节水栽培三种灌溉模式的水氮利用与产量形成. 作物学报, 2009, 35: 2045–2054
Zhang S Q, Fang B T, Zhang Y H, Zhou S L, Wang Z M. Utilization of water and nitrogen and yield formation under three limited irrigation schedules in winter wheat. Acta Agron Sin, 2009, 35: 2045–2054 (in Chinese with English abstract)
[9]易立攀, 于振文, 张永丽, 王东, 石玉, 赵俊晔. 不同土层测墒补灌对冬小麦耗水特性及产量的影响. 应用生态学报, 2013, 24(5): 1361? 1366
Yi L P, Yu Z W, Zhang Y L, Wang D, Shi Y, Zhao J Y. Effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Chin J Appl Ecol, 2013, 24: 1361?1366 (in Chinese with English abstract)
[10]满建国, 于振文, 石玉, 张永丽. 不同土层测墒补灌对冬小麦耗水特性与光合速率和产量的影响. 应用生态学报, 2015, 26: 2353?2361
Man J G, Yu Z W, Shi Y, Zhang Y L. Effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics, photosynthesis and grain yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2353?2361 (in Chinese with English abstract)
[11]Zhang Y P, Zhang Y H, Wang Z M, Wang Z J. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res, 2011, 123: 187–195
[12]张黎萍, 荆奇, 戴廷波, 姜东,曹卫星. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19: 311?316
Zhang L P, Jing Q, Dai T B, Jing D, Cao W X. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality. Chin J Appl Ecol, 2008, 19: 311?316 (in Chinese with English abstract)
[13]Zhao D D, Shen J Y, Lang K, Liu Q R, Li Q Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain. Agric Water Manag, 2013,118:87?92
[14]房全孝, 陈雨海, 李全起, 于舜章, 罗毅, 于强, 欧阳竹. 土壤水分对冬小麦生长后期光能利用及水分利用效率的影响. 作物学报, 2006,32: 861? 866
Fang Q X, Chen Y H, Li Q Q, Yu S Z, Luo Y, Yu Q, Ouyang Z. Effects of soil moisture on radiation utilization during late growth stages and water use efficiency of winter wheat. Acta Agron Sin, 2006,32: 861?866 (in Chinese with English abstract)
[15]刘丽平, 欧阳竹, 武兰芳,孙振中, 李发东. 灌溉模式对不同群体小麦光合特性的调控机制, 中国生态农业学报, 2012, 20: 189?196
Liu L P, Ou-yang Z, Wu L F, Sun Z Z, Li F D. Regulation mechanism of irrigation schedule on population photosynthesis of winter wheat.Chin J Eco-Agric. 2012, 20: 189?196 (in Chinese with English abstract)
[16]吕丽华, 李谦, 董志强, 张丽华, 梁双波, 贾秀领, 姚海坡. 灌水方式和灌溉量对冬小麦根冠结构的影响. 麦类作物学报, 2014, 34: 1537?1544
Lv L H, Li Q, Dong Z Q, Zhang L H, Liang S B, Jia X L, Yao H B. Effects of different irrigation methods and amount on root and canopy structure of winter wheat. J Triticeae Crops, 2014, 34: 1537?1544 (in Chinese with English abstract)
[17]郑丕尧. 作物生理学导论. 北京: 北京农业大学出版社, 1992. pp121?127
Zheng P Y. Introduction of Crop Physiology. Beijing: Beijing Agricultural University Press, 1992. pp121?127 (in Chinese)
[18]Krause G, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu RevPlant Physiol Plant Mol Biol,1991, 42:313?349
[19]Yao Z J, Li B L, Chen R Y, Guo T C. Effects of water and nitrogen application on photosynthetic characteristics of flag leaves and grain yield of wheat. Agric Sci Tech, 2011, 12: 258?261
[20]山仑, 康绍忠, 吴普特. 中国节水农业. 北京: 中国农业出版社, 2004. pp 229?230
Shan L, Kang S Z, Wu P T. Water Saving Agriculture in China. Beijing: China Agriculture Press, 2004. pp 229?230 (in Chinese)
[21]史泽艳, 高晓飞, 谢云.冠层底部光合有效辐射三种测量方法的比较. 资源科学, 2005,27:104?107
Shi Z Y, Gao X F, Xie Y. Comparison of three methods for measurement of transmitted photo-synthetically active radiation. Resour Sci, 2005,27:104?107 (in Chinese with English abstract)
[22]董树亭, 高荣岐, 胡昌浩, 王群瑛, 王空军. 玉米花粒期群体光合性能与高产潜力研究. 作物学报,1997,23: 318?325
Dong S T, Gao R Q, Hu C H, Wang Q Y, Wang K J. Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin,1997,23: 318?325 (in Chinese with English abstract)
[23]骆洪义, 丁方军. 土壤学实验. 成都: 成都科技大学出版社, 1995. p91
Luo H Y, Ding F J. Soil Science Experiments. Chengdu: Chengdu Science and Technology University Press, 1995. p91 (in Chinese)
[24]刘增进, 李宝萍, 李远华, 崔远来. 冬小麦水分利用效率与最优灌溉制度的研究.农业工程学报, 2004, 20:58?63
Liu Z J, Li B P, Li Y H, Cui Y L. Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Trans CSAE, 2004, 20:58?63 (in Chinese with English abstract)
[25]Sepakhah A R, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric Water Manag, 2012, 112: 55?62
[26]王建生, 徐子恺, 姚建文. 单位水量粮食生产能力分析. 水科学进展, 1999, 10: 429?434 (in Chinese)
Wang J S, Xu Z K, Yao J W. Analysis of food throughput per unit water use. Adv Water Sci,1999,10:429?434 (in Chinese with English abstract)
[27]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183?193
[28]Cirilo A G, Dardanelli J, Balzarini M, Andrade F H, Cantarero M, Luque S, Pedrol H M. Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Res, 2009, 113: 116?124
[29]Duncan W G. Maize. Cambridge, UK: Cambridge University Press, 1975. pp23?50
[30]陈素英, 张喜英, 毛任钊, 王彦梅, 孙宏勇. 播期和播量对冬小麦冠层光合有效辐射和产量的影响. 中国生态农业学报, 2009, 17: 681?685
Chen S Y, Zhang X Y, Mao R Z, Wang Y M, Sun H Y. Effect of sowing date and rate on canopy intercepted photo-synthetically active radiation and yield of winter wheat. Chin J Eco-Agric,2009, 17: 681−685 (in Chinese with English abstract)
[31]倪永静,贺群岭,李金沛,朱培培,胡新,张丽琴,王世杰. 不同灌水次数与氮肥运筹对‘豫教5号’叶面积指数及产量的影响. 中国农学通报, 2015,31:35?42
Ni Y J, He Q L, Li J P, Zhu P P, Hu X, Zhang L Q, Wang S J. Effect of different irrigation times and nitrogen fertilization on leaf area index and grain yield of ‘Yujiao 5’. Chin Agric Sci Bull, 2015, 31:35?42 (in Chinese with English abstract)
[32]吴忠东, 王全九. 阶段性缺水对冬小麦耗水特性和叶面积指数的影响. 农业工程学报, 2010, 26:63?68
Wu Z D, Wang Q J. Effects of stage water shortage on water consumption and leaf area index of winter wheat. Trans CSAE, 2010, 26:63?68 (in Chinese with English abstract)
[33]Ahmed I M, Dai H X, Zheng W T, Cao F B, Zhang G P, Sun D F, Wu F B. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Bioch, 2013, 63: 49?60
[34]董浩, 毕军, 夏光利, 周勋波, 陈雨海. 灌溉和种植方式对冬小麦生育后期旗叶光合特性及产量的影响. 应用生态学报, 2014, 25: 2259?2266
Dong H, Bi J, Xia G L, Zhou X B, Chen Y H. Effects of irrigation and planting patterns on photosynthetic characteristics of flag leaf and yield at late growth stages of winter wheat. Chin J Appl Ecol, 2014, 25: 2259?2266 (in Chinese with English abstract)
[35]Dong B D, Shi L, Shi C H, Qiao Y Z, Liu M Y, Zhang Z B. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes. Agric Water Manag, 2011, 99: 103?110

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!