欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 238-252.doi: 10.3724/SP.J.1006.2017.00238

• 耕作栽培·生理生化 • 上一篇    下一篇

不同小麦品种粒重和蛋白质含量的穗粒位效应分析

李豪圣1,曹新有1,宋健民1,刘鹏2,程敦公1,刘爱峰1,王灿国1,刘建军1,*,孙正娟1   

  1. 1山东省农业科学院作物研究所,山东济南 250100;2德州市农业科学研究院,山东德州 253015
  • 收稿日期:2016-01-22 修回日期:2016-07-27 出版日期:2017-02-12 网络出版日期:2016-11-25
  • 通讯作者: 刘建军, E-mail: ljjsaas@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31271635), 山东省自主创新重大关键技术计划项目(2014GJJS0201-1), 国家现代农业产业体系建设专项(CARS-03-1-8)和山东省农业科学院青年英才培养计划资助。

Effects of Spikelet and Grain Positions on Grain Weight and Protein Content of Different Wheat Varieties

LI Hao-Sheng1,CAO Xin-You1,SONG Jian-Min1,LIU Peng2,CHEN Dun-Gong1,LIU Ai-Feng1,WANG Can-Guo1,LIU Jian-Jun1,*,SUN Zheng-Juan1   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2Dezhou Academy of Agricultural Sciences, Dezhou 253015, China.
  • Received:2016-01-22 Revised:2016-07-27 Published:2017-02-12 Published online:2016-11-25
  • Contact: 刘建军, E-mail: ljjsaas@163.com
  • Supported by:

    This study was supported by the National Natural Science Founding of China (31271635), Shandong Provincial Innovation Project for Key Technologies (2014GJJS0201-1), China Agriculture Research System (CARS-03-1-8), and the Yong Talents Training Program of Shandong Academy of Agricultural Sciences.

摘要:

小麦籽粒的发育存在时空差异,不同穗粒位的粒重和蛋白质产量也存在差异,剖析粒重和籽粒蛋白质含量的穗粒位效应,有助于深入了解小麦产量和品质的形成机制。于2009—2010和2010—2011小麦生长季进行大田试验,选用3种类型4个品种,分析了不同的穗粒位的粒重、蛋白质积累和蛋白质含量的动态变化。结果表明,粒重和蛋白质积累量的穗粒位间变异大于年份(环境)间变异和基因型间变异;蛋白质含量的年份间变异大于基因型间变异和穗粒位间变异,而成熟期穗粒位间变异最大。大粒品种易受环境影响,小粒品种比较稳定优质面包小麦品种开花后各时期的籽粒蛋白质含量普遍高于中筋小麦,但不同时期、不同年份差异较大。开花后各时期,强势粒的粒重、蛋白质积累量和蛋白质含量显著大于弱势粒,中部籽粒显著大于上部和下部籽粒;随着灌浆进程穗中部与下部籽粒的差异变小,至开花后36 d时,中部和下部籽粒的蛋白质含量无显著差异。随籽粒灌浆进程,不同品种各穗粒位的粒重和蛋白质积累均呈“慢–快–慢”的“S”型曲线变化,蛋白质含量均呈“V”型曲线变化,灌浆后期,中部和下部强势粒以及下部弱势粒的蛋白质含量增长速度明显快于其他穗粒位籽粒。粒重最大生长速率出现在开花后18~21 d,快速增重时期为开花后12~26 d;籽粒蛋白质最大积累速率出现在开花后21~24 d,快速积累时期为开花后13~32 d。根据本研究结果,我们认为高产优质小麦品种的特征是籽粒不宜过大,小花位粒数不宜过多,且中、下部籽粒较多,开花后13~26 d灌浆速率快。

关键词: 穗粒位, 粒重, 蛋白质含量, 蛋白质积累量

Abstract:

Wheat seeds are developed in a spatial-temporal order resulting in different grain weights and protein contents in different positions of spike. Dissecting the position effect of grain weight and protein content is helpful to go into the mechanism of yield and quality formation. This study was carried out in the 2009–2010 and 2010–2011 winter wheat seasons with four varieties in three quality types. The dynamic changes of grain weight, protein accumulation and protein content were measured according to spikelet–grain position. Variations of grain weight and protein accumulation affected by spikelet–grain position were greater than those by environment (year) or genotype. Variation of protein content affected by environment was larger than that by genotype or spikelet–grain position, however, the spikelet–grain position was the first affecting factor at maturity stage. Large-grain variety was more sensitive to environment, whereas, small-grain variety was relatively stable. During grain filling, the protein content of strong-gluten wheat was higher than that of medium-gluten wheat, and influenced greatly by filling stage and environment. The single grain weight, protein content, and protein accumulation of superior grains were significantly higher than those of inferior grains during the grain-filling period, and the mid-position grains were significantly superior to the upper- and lower-position grains. However, the difference between mid- and lower-position grains became smaller with the filling process, until no significant difference in protein content at maturity stage (36 days after flowering). The dynamics of single grain weight and protein accumulation showed an “S” curve of slow–fast-slow changing trend and the dynamics of protein content showed a “V” curve, in spite of genotype or spikelet–grain position. During late filling stage, the supervisor grains in mid- and lower-positions, as well as inferior grains in lower-position had faster increase of protein content than grains in other positions. For grain weight, the maximum growth rate appeared at 18–21 days after flowering, and the rapid growth period appeared at 12–26 days after flowering. For grain protein, the maximum accumulation rate appeared at 21–24 days after flowering, and the fast accumulation period was from 13 to 32 days after flowering. It is concluded that moderate grain size and floret number are important for high-yield and high-quality wheat breeding, and an appropriate increase of the mid- and lower-position grains may accelerate grain-filling speed at 13–26 days after flowering.

Key words: Spikelet–grain position, Single grain weight, Protein content, Protein accumulation

[1]  Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13: 156–169
[2]  潘洁, 姜东, 曹卫星, 孙传范. 小麦穗籽粒数、单粒重及单粒蛋白含量的小穗位和粒位效应. 作物学报, 2005, 31: 431–437
Pan J, Jiang D, Ca W X, Sun C F. Effects of spikelet and grain positions on grain number, weight and protein content of wheat spike. Acta Agron Sin, 2005, 31: 431–437 (in Chinese with English abstract)
[3]  贺明荣, 王振林, 张杰昌. 小麦开花后光合物质在不同穗位间的分配及其与穗粒重的关系. 作物学报, 2000, 26: 190–194
He M R, Wang Z L, Zhang J C. Distribution of photo assimilate to different parts of wheat ear after anthesis and its relation to kernel weight per ear. Acta Agron Sin, 2000, 26: 190–194 (in Chinese with English abstract)
[4]  余松烈主编. 山东小麦. 北京: 农业出版社, 1990. pp 101–102
Yu S L. Wheats in Shangdong Province. Beijing: Agriculture press. 1990. pp 101–102 (in Chinese)
[5]  金善宝. 中国小麦学. 北京: 中国农业出版社, 1996. pp 93–94
Jin S B. Wheat Science in China. Beijing: China Agriculture Press. 1996. pp 93–94 (in Chinese)
[6]  董正国. 小麦粒重的分布规律. 国外农学-麦类作物, 1991, 3: 47–49
Dong Z G. The distribution regularity of wheat grain weight. Abroad Agronomy- Triticeae Crops, 1991, 3: 47–49 (in Chinese with English abstract)
[7]  侯远玉. 小麦品种间不同穗粒位粒数与粒重的变异. 四川农业大学学报, 1997, 15(2): 218–222
Hou Y Y. Variation of grain weight and grain set between ear sections in different era-type of wheat genetypes. J Sichuan Agric Univ, 1997, 15(2): 218–222 (in Chinese with English abstract)
[8]  屈会娟, 李金才, 沈学善, 李如意, 魏凤珍, 张一. 播种密度对冬小麦不同穗位与粒位结实粒数和粒重的影响. 作物学报, 2009, 35: 1875-1883
Qu H J, Li J C, Shen X S, Li R Y, Wei F Z, and Zhang Y. Effects of plant density on grain number and grain weight at different spikelets and grain positions in winter wheat cultivars. Acta Agron Sin, 2009, 35: 1875-1883 (in Chinese with English abstract)
[9]  黄开红, 石伟旗, 卞祖华. 小麦开花特性与结实率的研究. 江苏农业科学, 1990, (6): 5-7
Huang K H, Shi W Q, Bian Z H. Study on wheat flowering characteristics and setting percentage. Jiangsu Agric Sci, 1990, (6): 5–7 (in Chinese with English abstract)
[10]  左毅, 马冬云, 张艳菲, 李愿, 王晨阳, 郭天财. 冬小麦籽粒蛋白质含量及氮代谢关键酶活性的穗粒位差异. 华北农学报, 2012, 27(6) : 202–207
Zuo Y, Ma D Y, Zhang Y F, Li Y, Wang C Y, Guo T C. Effects of spikelet and grain positions on grain protein content and nitrogen metabolism enzyme activity of winter wheat. Acta Agric Boreali-Sin, 2012, 27(6): 202–207 (in Chinese with English abstract)
[11]  刘晓冰, 李文雄. 春小麦不同穗位和粒位籽粒蛋白质积累方式的初步研究. 种子, 1996, (5): 4–6
Liu X B, Li W X. Apreliminary study on protein accumulation of grains in different spikelet and grain locations of spring wheat. Seed, 1996, (5): 4–6 (in Chinese with English abstract)
[12]  吕淑芳, 苗芳, 白龙. 不同温度型小麦强势和弱势籽粒物质积累规律的研究. 西北农林科技大学学报(自然科学版) , 2010, 38(12): 117–122
Lyu S F, Miao F, Bai L. Study on superior and inferior grains among different temperature-type wheat accumulation. J Northewest A&F Univ (Nat Sci Edn), 2010, 38(12): 117–122 (in Chinese with English abstract)
[13]  戴国俊, 王金玉, 杨建生, 李尚民, 原新廷. 应用统计软件SPSS拟合生长曲线方程. 畜牧与兽医, 2006, 38(9): 28–30
Dai G J, Wang J Y, Yang J S, Li S M, Yuan X T. Fitting growth curve equation by SPSS. Anim Husb Veter Med, 2006, 38(9): 28–30(in Chinese)
[14]  陈佳慧, 兰进好, 王晖, 王文文, 田纪春. 小麦籽粒形态及千粒重性状的QTL初步定位. 麦类作物学报, 2011, 31: 1001–1006
Chen J H, Lan J H, Wang H, Wang W W, Tian J C. QTL mapping for traits of kernel morphology and grain weight in common wheat. J Triticeae Crops, 2011, 31: 1001–1006 (in Chinese with English abstract)
[15]  远彤, 郭天财, 罗毅, 孙金花. 冬小麦不同粒型品种茎叶组织结构与籽粒形成关系的研究. 作物学报, 1998, 24: 876–883
Yuan T,  Guo T C, Luo Y, Sun J H. Relationship between the anatomical structure and the grain formation of winter wheat varieties with different grain types. Acta Agron Sin, 1998, 24: 876–883 (in Chinese with English abstract)
[16]  贺明荣, 王振林, 曹鸿鸣. 小麦不同品种光合速率和14C同化物分配对源库比改变的响应. 植物学通报, 1998, 15(增刊): 91–94
He M R, Wang Z L, Cao H M. Photosynthetic rate and distribution of 14C assimilate in different wheat cultivars in response to altered source sink ratio.Chin Bull Bot, 1998, 15(suppl): 91–94 (in Chinese with English abstract)
[17]  陈芳, 郑炜君, 李盼松, 于太飞, 刘生祥, 陈明, 李连城, 徐兆师, 马有志. 小麦耐热性鉴定方法及热胁迫应答机理研究进展. 植物遗传资源学报, 2013, 14: 1213–1220 (in Chinese with English abstract)
Chen F, Zheng W J, Li P S, Yu T F, Liu S X, Chen M, Li L C, Xu Z S, Ma Y Z. Progress of evaluating techniques and potential mechanism on heat tolerance in wheat. J Plant Genet Resour, 2013, 14: 1213–1220 (in Chinese with English abstract)
[18]  Cao X Y, Mondal S, Cheng D G, Wang C G, Liu A F, Song J M, Li H S, Zhao Z D, Liu J J. Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars. Acta Physiol Plant, 2015, 37: 1–10
[19]  Pal M S, Zhang G P, Chen J X. Influence of genotypes and nitrogen fertilization on leaf morphogenesis and tillering behaviors in winter wheat. J Triticeae Crops, 2000, 20: 28-33
[20]  Chen Y, Yuan L P, Wang X H, Zhang D Y, Chen J, Deng Q Y, Zhao B R, Xu D Q. Relationship between grain yield and leaf photosynthetic rate in super hybid rice. J Plant Physiol Mol Biol, 2007, 33: 235–243
[21]  吴金芝, 李友军, 郭天财. 小麦品种间不同穗粒位籽粒蛋白质及其组分积累规律的研究. 河南科技大学学报(农学版), 2004, 24(1): 1–4
Wu J Z, Li Y J, Guo T C. Study on accumulation laws of the wheat grain protein and its composition in different spikelets and grain locations of different breeds. J Henan Univ of Sci Technol (Agric Sci), 2004, 24(1): 1–4 (in Chinese with English abstract)
[22]  李春喜, 姜丽娜, 石惠恩, 姬生栋. 小麦不同分蘖位结实特性与粒重分布的研究. 耕作与栽培, 1999, 6: 5–9
Li C X, Jiang L N, Shi H E, Ji S D. Study on the distribution of setting characteristics and grain weight different for different wheat tillering. Tillage & Cultivation, 1999, 6: 5–9 (in Chinese)
[23]  李存东, 曹卫星, 张月晨, 戴廷波. 不同播期和品种小麦小花结实的粒位差异. 华北农学报, 2001, 16(2): 1–7
Li C D, Cao W X, Zhang Y C, Dai T B. Floret position differences in seed setting characteristic of different sowing dates and varieties. Acta Agric Boreali-Sin, 2001, 16(2): 1–7 (in Chinese with English abstract)
[24]  裴雪霞, 王姣爱, 党建友, 王秀斌, 张定一. 小麦结实粒数、粒重和品质的小穗位和粒位效应. 中国农业科学, 2008, 41: 381–390
Pei X X, Wang J A, Dang J Y, Wang X B, Zhang D Y. Effects of spikelet and grain position on fertile spikelet number, grain weight and quality of wheat. Sci Agric Sin, 2008, 41: 381–390 (in Chinese with English abstract)
[25] 茹振钢, 李淦, 胡铁柱, 栗利波. 强筋小麦不同穗位及花位籽粒粒重和品质的变化. 麦类作物学报, 2006, 26(5): 134–136
Ru Z G , Li G, Hu T Z, Li L B. Analysis of grain weight and quality at different floret position of strong glutinin wheat. J Triticeae Crops, 2006, 26(5): 134–136 (in Chinese with English abstract)
[26] 黄禹, 晏本菊, 任正隆. 不同品种小麦籽粒蛋白质组分及谷蛋白大聚体的积累规律. 西南农业学报, 2007, 20: 591–596
Huang Y, Yan B J, Ren Z L. Accumulation regularity of protein components in wheat cultivars with different varieties. Southwest China J Agric Sci, 2007, 20: 591–596 (in Chinese with English abstract)
[27]  孟秀蓉, 熊飞, 孔妤, 陈永惠, 马守宝, 陆巍, 王忠. 强、中弱筋小麦籽粒中淀粉、蛋白质积累和淀粉体发育的比较. 作物学报, 2009, 35: 962–966
Meng X R, Xiong F, Kong Y, Chen Y H, Ma S B, Lu W, Wang Z. Comparison of starch, protein accumulation and amyloplast development in wheat cultivars with strong, medium, and weak gluten. Acta Agron Sin, 2009, 35: 962–966 (in Chinese with English abstract)
[28]  杜金哲, 张丽娟, 李文雄, 于振文. 不同品质类型小麦籽粒蛋白质积累规律. 青岛农业大学学报(自然科学版), 2008, 25(3): 184–188
Du J Z, Zhang L J, Li W X, Yu Z W. The accumulation law of grain proteinin genotypes with different quality in wheat. J Qingdao Agric Univ (Nat Sci), 2008, 25(3): 184–188 (in Chinese with English abstract)
[29]  朱新开, 周君良, 封超年, 郭文善, 彭永欣. 不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析. 作物学报, 2005, 31: 342–347
Zhu X K, Zhou J L, Feng C N, Guo W S, Peng Y X. Differences of protein and its component accumulation in wheat for different end uses. Acta Agron Sin, 2005, 31: 342–347 (in Chinese with English abstract)
[30]  马新明, 张娟娟, 熊淑萍, 胡徐来, 何建国. 氮肥用量对不同品质类型小麦品种籽粒灌浆特征和产量的影响. 麦类作物学报, 2005, 25(6): 72–77
Ma X M, Zhang J J, Xiong S P, Hu X L, He J G. Effect of different amounts of nitrogen application on grain filling and yield of wheat varieties with different qualities. J Triticeae Crops, 2005, 25(6): 72–77 (in Chinese with English abstract)
[31]  张晓龙. 小麦品种籽粒灌浆的研究. 作物学报, 1982, 8: 87–92
Zhang X L. Study on the grain filling of wheat. Acta Agron Sin, 1982, 8: 87–92 (in Chinese with English abstract)
[32]  冯素伟, 胡铁柱, 李淦, 董娜, 李笑慧, 茹振钢, 程自华. 不同小麦品种籽粒灌浆特性分析. 麦类作物学报, 2009, 29: 643–646
Feng S W, Hu T Z, Li G, Dong N, Li X H, Ru Z G, Cheng Z H. Analysis on grain filling characteristics of different wheat varieties. J Triticeae Crops, 2009, 29: 643–646 (in Chinese with English abstract)
[33]  彭永欣, 郭文善, 封超年, 严六零, 周振兴. 小麦籽粒生长特性分析. 江苏农学院学报, 1992, 13(3): 9–15
Peng Y X, Guo W S, Feng C N, Yan L L, Zhou Z X. Analysis on the grain growth characters in wheat. J Jiansu Agric Coll, 1992, 13(3): 9–15 (in Chinese with English abstract)
[34]  张林生, 蒋纪云, 张保军. 小麦籽粒发育过程中氨基酸的变化. 作物学报, 1997, 23: 301–306
Zhang L S, Jian J Y, Zhang B J. Changes of amino acids during the development of wheat grain. Acta Agron Sin, 1997, 23: 301–306 (in Chinese with English abstract)

[1] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[2] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[3] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[4] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[5] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[6] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[7] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[8] 司文洁,吴林楠,郭利建,周梦蝶,刘香利,马猛,赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证[J]. 作物学报, 2019, 45(12): 1905-1911.
[9] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
[10] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[11] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
[12] 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011.
[13] 黄明,王朝辉,罗来超,王森,包明,何刚,曹寒冰,刁超朋,李莎莎. 膜侧施肥对旱地小麦产量、籽粒蛋白质含量和水分利用效率的影响[J]. 作物学报, 2017, 43(06): 899-911.
[14] 宁海龙,白雪莲,李文滨,薛红,庄煦,李文霞,刘春燕. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位[J]. 作物学报, 2016, 42(11): 1620-1628.
[15] 王加峰,郑才敏,刘维,罗文龙,王慧,陈志强*,郭涛*. 基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建[J]. 作物学报, 2016, 42(08): 1160-1167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!