欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 15-23.doi: 10.3724/SP.J.1006.2018.00015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

控制普通野生稻种子休眠性QTL的定位

孙爱伶1,伍洪铭1,陈高明1,张天雨1,曹鹏辉1,刘世家1,江玲1,*,万建民1,2   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室 / 农业部长江中下游粳稻生物学与遗传育种重点实验室 / 江苏省植物基因工程技术研究中心,江苏南京 210095;2中国农业科学院作物科学研究所 / 作物基因资源与遗传改良国家重大科学工程,北京100081
  • 收稿日期:2017-04-06 修回日期:2017-09-10 出版日期:2018-01-12 网络出版日期:2017-10-31
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0100101-08), 江苏省农业科技自主创新资金课题(CX[16]1029), 安徽省科技重大专项(16030701068)和江苏省现代作物生产协同创新中心项目资助。

Mapping of QTLs for Seed Dormancy in Oryza Rufipogon Griff.

SUN Ai-Ling1,WU Hong-Ming1,CHEN Gao-Ming1,ZHANG Tian-Yu1,CAO Peng-Hui1,LIU Shi-Jia1,JIANG Ling1,*,WAN Jian-Min1,2   

  1. 1State Key Loboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture / Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; 2National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-04-06 Revised:2017-09-10 Published:2018-01-12 Published online:2017-10-31
  • Supported by:

    This study was supported by the National Key Research and Development Program of China (2016YFD0100101-08), the Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province (CX[16]1029), Science and Technology Major Project of Anhui Province (16030701068), and Jiangsu Collaborative Innovation Center for Modern Crop Production.

摘要:

水稻种子休眠性是关系到稻米品质和稻种质量的一个重要农艺性状。研究水稻种子休眠性遗传及分子机制对培育具有适度休眠性的优良水稻品种具有重要意义。本研究以籼稻品种9311为受体、普通野生稻为供体的染色体片段置换系群体为材料,在后熟不同时间检测群体种子休眠性,对控制种子休眠性的QTL进行定位分析,共定位到14个QTL,分布在第3、第4、第5、第6、第7、第10、第11、第12染色体上。筛选休眠性显著强于背景亲本9311的家系,分析这些家系携带的QTL数目,表明携带的位点越多,休眠性越强。进一步利用家系Q14与9311的F2群体验证了第7染色体标记RM180和RM21323之间存在一个效应较大的QTL qSD-7-2,该位点LOD值为18.49,可解释的表型变异率为33.53%,表明该位点是一个控制普通野生稻种子休眠性的主效QTL,且能稳定遗传。本研究为野生稻种子休眠基因的精细定位及克隆奠定了基础,且为培育强休眠性籼稻品种提供了育种材料。

关键词: 野生稻, 种子休眠, 染色体片段置换系, QTL

Abstract:

Seed dormancy of rice is an important agronomic trait related to rice quality and quantity. Studies on genetics and molecular mechanisms of rice seed dormancy are of great significance in breeding fine rice varieties with moderate dormancy. In this research, a set of chromosome segment substitution lines (CSSLs), derived from an indica rice variety 9311 as the recurrent parent and the Oryza rufipogon Griff. as the donor parent, were used to detect the QTLs for dormancy of seeds at different storage dates after harvest. A total of 14 QTLs were detected on chromosomes 3, 4, 5, 6, 7, 10, 11, and 12. The lines with significantly stronger dormancy than the background parent 9311 were selected, showing the more dormancy loci in the lines the more strong dormancy. The F2 population of the cross between Q14 and 9311 was used to verify the QTLs for seed dormancy. A significant dormancy locus qSD-7-2 was mapped on chromosome 7 between the markers RM180 and RM21323, its LOD was 18.49 and the phenotypic variation rate was 33.53%. On this major stable inherited QTL, the allele gene from Oryza rufipogon Griff. significantly increased the dormancy of seeds. These results are available for map-based cloning of major QTLs for seed dormancy, and provide the breeding materials for cultivating appropriate dormant rice varieties.

Key words: Oryza rufipogon Griff., seed dormancy, CSSL, QTL

[1] Bewley J D. Seed germination and dormancy. Plant Cell, 1997, 9: 1055–1066 [2] Dong Y J, Tsuzuki E, Kamiunten H, Terao H, Lin D Z, Matsuo M, Zheng Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res, 2003, 81: 133–139 [3] 卢丙越. 水稻品种强休眠性的定位及遗传解析. 南京农业大学博士学位论文, 江苏南京, 2011 Lu B Y. QTL Mapping and genetic dissection of strong seed dormancy in N22 (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2011 (in Chinese with English abstract) [4] Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA, 2010, 107: 5792–5797 [5] Takeuchi Y, Lin S Y, Sasaki T, Yano M. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet, 2003, 107: 1174–1180 [6] Gu X Y, Kianian S F, Hareland G A, Hoffer B L, Foley M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet, 2005, 110: 1108–1118 [7] Gu X Y, Liu T L, Feng J H, Suttle J C, Gibbons J. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol, 2010, 73: 97–104 [8] Lu B Y, Xie K, Yang C Y, Wang S F, Liu X, Zhang L, Jiang L, Wan J M. Mapping two major effect grain dormancy QTL in rice. Mol Breed, 2011, 28: 453–462 [9] 罗正良. 水稻抗穗发芽主效QTL qPSR8的精细定位及候选基因分析. 四川农业大学硕士学位论文, 四川雅安, 2012 Luo Z L. Fine mapping and candidate gene analysis of qPSR8, a major QTL for pre-harvest sprouting resistance in rice. MS Thesis of Sichuan Agricultural University, Ya’an, China, 2012 (in Chinese with English abstract) [10] 钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展. 中国水稻科学, 2000, 14: 103–106 Zhong D B, Luo L J, Ying C S. Advances on transferring elite gene from wild rice species into cultivated rice. Chin J Rice Sci, 2000, 14: 103–106 (in Chinese with English abstract) [11] Wan J M, Cao Y J, Wang C M, Ikehashi H. Quantitative trait loci associated with seed dormancy in rice. Crop Sci, 2005, 45: 712–716 [12] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15 [13] Sanguinetti C J, Dias N E, Simpson A J. RAPD silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 914–918 [14] Meng L, Li H H, Zhng L Y, Wang J K. QTL IciMapping Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283 [15] McCouch S R, Cho Y G, Yno M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [16] Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet, 1996, 92: 213–224 [17] Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet, 2000, 100: 840–846 [18] Miura K, Lin S, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet, 2002, 104: 981–986 [19] Wang L, Cheng J, Lai Y Y, Du W L, Huang X, Wang Z F, Zhang H S. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta, 2014, 239: 411–420 [20] Li W, Xu L, Bai X F, Xing Y Z. Quantitative trait loci for seed dormancy in rice. Euphytica, 2011, 178: 427–435 [21] Marzougui S, Sugimoto K, Yamanouchi U, Shimono M, Hoshino T, Hori K, Kobayashi M, Ishiyama K, Yano M. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice. Theor Appl Genet, 2012, 124: 893–902 [22] Gu X Y, Kianian S F, Foley M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics, 2004, 166: 1503–1516 [23] Sasaki K, Kazama Y, Chae Y, Sato T. Confirmation of novel quantitative trait loci for seed dormancy at different ripening stages in rice. Rice Sci, 2013, 20: 207–212 [24] Rathi S, Baruah A R, Chowdhury R K, Sarma R N. QTL analysis of seed dormancy in indigenous rice of Assam, India. Cereal Res Commun, 2011, 39: 137–146

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[11] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[14] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[15] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!