欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1948-1956.doi: 10.3724/SP.J.1006.2022.12049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻落粒基因SH8的精细定位与克隆

王穆穆1(), 何艳芳2, 郑永胜1, 王晖1, 王丽媛1, 王东建1, 张晗1, 李汝玉1,*()   

  1. 1山东省农业科学院作物研究所, 山东济南 250100
    2山东省种子管理总站, 山东济南 250100
  • 收稿日期:2021-07-22 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-21
  • 通讯作者: 李汝玉
  • 作者简介:E-mail: opmcy@163.com
  • 基金资助:
    国家自然科学基金项目(31801340)

Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.)

WANG Mu-Mu1(), HE Yan-Fan2, ZHENG Yong-Sheng1, WANG Hui1, WANG Li-Yuan1, WANG Dong-Jian1, ZHANG Han1, LI Ru-Yu1,*()   

  1. 1Crop research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Shandong Seed Administration Station, Jinan 250100, Shandong, China
  • Received:2021-07-22 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-21
  • Contact: LI Ru-Yu
  • Supported by:
    National Natural Science Foundation of China(31801340)

摘要:

落粒性是水稻的重要性状之一, 是野生稻种子传播和后代繁衍的重要保障, 但是容易落粒在栽培稻的生产中会造成产量损失。目前, 在水稻中已经克隆了一些落粒相关基因, 但是这些基因并不能解释水稻落粒的全部表型变异。本研究从白谷(Pei-kuh)和普通野生稻(W1944)构建的重组自交系中选取落粒性强且不含有SH4基因的材料E6-5, 与Pei-kuh进行杂交构建分离群体, 将以前检测到位于8号染色体的落粒QTL精细定位于26.4 kb的区间内, 并把该位点的落粒基因命名为SHATTERING8 (SH8)。该区段共有4个编码基因, Pei-kuh和E6-5的测序比对发现LOC_Os08g41950基因在编码区有3个碱基的差异, 同时实时定量PCR分析表明该基因在离层部位表达, 因此我们把LOC_Os08g41950作为SH8的目标候选基因。为了验证LOC_Os08g41950是否参与水稻落粒的调控, 我们利用来自E6-5的LOC_Os08g41950编码序列构建了过表达载体并遗传转化Pei-huh。落粒表型鉴定结果表明, 与Pei-huh相比, 转基因植株的落粒性明显增强, 不仅种子脱落所需的拉力值显著降低, 而且还具有更光滑的离层断裂面。本研究有助于促进水稻驯化和水稻落粒调控机制的研究。

关键词: 普通野生稻, 落粒性, 离层, 基因克隆, SH8基因

Abstract:

Seed shattering is an important trait for seed dispersal and reproduction of offspring in wild rice. It is a vital guarantee for seed dispersal and offspring reproduction of wild rice, but easy grain dropping will cause yield loss in domesticated rice production. Although some genes related to seed shattering have been cloned in rice, these genes were not responsible for all phenotype variation of rice seed shattering. In this study, a recombinant inbred line (E6-5) was selected from a cross between an indica variety Pei-kuh and an Asian common wild rice W1944 and hybridized with Pei-kuh to construct the isolated population. E6-5 harbored W1944 introgression segment on chromosome 8, but it had not carried SH4 gene and exhibited a very easy seed shattering phenotype. By analyzing an F2 segregation population constructed using E6-5 and Pei-kuh, we narrowed down the SHATTERING8 (SH8, qSHT-8) in the 26.4 kb interval. There were four protein-coding genes in this region. The comparison of PEI-Kuh and E6-5 sequencing revealed that LOC_Os08g41950 contained three single nucleotide polymorphisms (SNPs) in coding region. Meanwhile, qRT-PCR revealed that LOC_Os08g41950 was expressed in the junction of flower and pedicel, where the abscission layer was formed and shed off. We considered LOC_Os08g41950 as the candidate gene for SH8. To verify whether LOC_Os08g41950 was responsible for rice seed shattering, we constructed an overexpression vector using LOC_Os08g41950 encoding sequence from E6-5 and transformed it into Pei-huh. Compared with Pei-kuh, the shattering ability of transgenic plants was significantly enhanced. In addition, consistent with the BTS testing results, transgenic plants had smoother fracture surface of pedicel compared with that of Pei-kuh in scanning electron microscopy photos. These results would facilitate the study of rice domestication and seed shattering regulation mechanism.

Key words: O. rufipogon, seed shattering, abscission layer, gene cloning, SH8 gene

附表1

本研究所用的引物(酶切位点用小写字母表示)"

引物名称
Name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
用途
Application
FNP-SH4 ACTACCGCAAGGGGAACTG TGGGGAGGTTGCAGTCCTT 功能位点检测FNP detection
RM23469 CAACAGAAGCCATTAGGCATTAGC ACCGAAGTGATCAACAACCTACC 基因定位Gene mapping
RM23489 AGCAGGAGGAGGAGAAGGGAAGG CGAGCCACTGCTTCTTCTGTGC 基因定位Gene mapping
RM447 ACGGGCTTCTTCTCCTTCTCTCC TCCCTTGTGCTGTCTCCTCTCC 基因定位Gene mapping
RM23532 TATTGCCATGAATGCTGGGAAGG GGCATCGCAATGACAAACATCC 基因定位Gene mapping
RM23586 TTCTGTGGATAGCTGGAACATGC CCAGATACATCATCAGGAAGGAAGG 基因定位Gene mapping
M1(CAPS)a TGAATTGACAAAACGGACCA GGACCTGTTCTTGGGTTGAA 基因定位Gene mapping
M2(IN/DEL) AACATGATGGTGCCAAGTGA AGGATGGAGATGGTGAGTGG 基因定位Gene mapping
ACTIN TACAGTGTCTGGATTGGAGGAT TCTTGGCTTAGCATTCTTGGGT 实时定量PCR RT-qPCR
qPCR-950 ATTCATCCCTGAAGCACGTC GGCTGACGTTCATAGCCAAT 实时定量PCR RT-qPCR
qPCR-960 CTTCCACCTCCAGCATTGAT ATCGCTTCCTCCAAACCTCT 实时定量PCR RT-qPCR
950QC-1 AACATGATGGTGCCAAGTGA ACAGGACAGATCCAATCGAA 测序 Sequencing
950QC-2 GCTGAAGAGGATCGAGAACA CAGCGCTATGACATCGAAAA 测序 Sequencing
950QC-3 CTGAAGGCAAGGGTTGAAAA GTTGCTTTCCTCCAGCTACA 测序 Sequencing
950QC-4 TGCAGATATCATGGAATGGA TGCGACAGTGAATCTGTCAT 测序 Sequencing
960QC-1 TATCCGCGTACGGCTTAATG AATGTGGTGGTGAGGGAATC 测序 Sequencing
960QC-2 TCCGAGTGCTCCTAGTGGAT AGAAAGGTGGGAAGGGAAAA 测序 Sequencing
960QC-3 GAGGCGAAACACCAAATCTC TACCCCTAGCCTCTGCTTGA 测序 Sequencing
引物名称
Name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
用途
Application
960QC-4 TATCTCCACCATCCCCACTC GGCGTGCCAGTTAGTTTGAT 测序 Sequencing
960QC-5 GTTCGGTCCGATCTATCAAGA CTCACACAACCACCATCCTG 测序 Sequencing
960QC-6 ATGGCGACAACCTACTGACC GAACCAGGCAAAGGGTTTCT 测序 Sequencing
pSH8-0E AAAggatcc- ATGGGGAGGGGTCGGGTGGA AAAactagt- TCATGGTAGCCATGGGGGCAT 载体构建Vector construction
HYG AAGTTCGACAGCGTCTCCGAC TCTACACAGCCATCGGTCCAG 转基因检测Transgenic detection
CDS-1 ATGGGGAGGGGTCGGGTGGA CGGCTAGCTTTCAATTGCTC 转基因检测Transgenic detection

图1

E6-5和Pei-kuh的表型鉴定 A: 种子脱落所需的拉力值(BTS); B和C: 离层组织纵切后吖啶橙染色的荧光图片, AL表示离层; D和E: 离层断裂面的扫描电镜图片。B~E的标尺为50 μm。**表示在0.01水平上差异显著(t-test)。"

图2

SH8的图位克隆 N表示定位群体的植株数量。"

表1

定位区段内的日本晴基因注释"

基因名称
Locus name
基因注释
Gene annotation
LOC_Os08g41950 OsMADS7-MADS-box family gene with MIKCc type-box, expressed
LOC_Os08g41960 OsMADS37-MADS-box family gene with MIKCc* type-box, expressed
LOC_Os08g41970 Conserved hypothetical protein
LOC_Os08g41980 Aminotransferase, putative, expressed

图3

候选区段内的MADS-box基因分析 A: E6-5抽穗期MADS-box基因的表达模式分析; B: Os08g41950基因在花柄和花中的表达; C: E6-5和Peikuh的Os08g41950基因编码序列比对, 差异碱基用红色加亮显示, 引起氨基酸变化的碱基用下划线标识。FP表示小花和柄的交界处, F表示小花。"

图4

转基因植株的检测 A: 潮霉素引物检测; B: SH8基因特异引物检测。"

图5

转基因植株的表型鉴定 A: SH8基因在离层部位的表达; B: 种子脱落所需的拉力值(BTS); C和D: 离层断裂面的扫描电镜图片。C和D的标尺为50 μm。**表示在0.01的水平上差异显著(t-test)。"

[1] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309-1321.
pmid: 17190597
[2] Fuller D Q, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya L A, Sun G P. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science, 2009, 323: 1607-1610.
doi: 10.1126/science.1166605
[3] Taylor J E, Whitelaw C A. Signals in abscission. New Phytol, 2001, 151: 323-340.
doi: 10.1046/j.0028-646x.2001.00194.x
[4] Taghizadeh M S, Simon C, Nicolas M E, Cousens R D. Water deficit changes the anatomy of the fruit abscission zone in Raphanus raphanistrum (Brassicaceae). Aust J Bot, 2009, 57: 708-714.
doi: 10.1071/BT09165
[5] Zhou Y, Lu D, Li C, Luo J, Zhu B F, Zhu J, Shang-Guan Y, Wang Z, Sang T, Zhou B, Han B. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell, 2012, 24: 1034-1048.
doi: 10.1105/tpc.111.094383
[6] Xiong Z L, Liu D K, Dai K X, Xu G C, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999, 98: 243-251.
doi: 10.1007/s001220051064
[7] Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet, 2000, 100: 840-846.
doi: 10.1007/s001220051360
[8] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479-493.
pmid: 12736777
[9] Gu X Y, Kianian S F, Hareland G A, Hoffer B L, Foley M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet, 2005, 110: 1108-1118.
doi: 10.1007/s00122-005-1939-2
[10] Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol, 2006, 170: 185-193.
[11] Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396.
pmid: 16614172
[12] Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939.
doi: 10.1126/science.1123604
[13] Lin Z, Griffith M E, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11-20.
doi: 10.1007/s00425-006-0460-4
[14] Yoon J, Cho L H, Kim S L, Choi H, Koh H J, An G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J, 2014, 79: 717-728.
doi: 10.1111/tpj.12581
[15] Ji H, Kim S R, Kim Y H, Kim H, Eun M Y, Jin I D, Cha Y S, Yun D W, Ahn B O, Lee M C, Lee G S, Yoon U H, Lee J S, Lee Y H, Suh S C, Jiang W, Yang J I, Jin P, McCouch S R, An G, Koh H J. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J, 2010, 61: 96-106.
doi: 10.1111/j.1365-313X.2009.04039.x
[16] Yoon J, Cho L H, Antt H W, Koh H J, An G. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol, 2017, 174: 312-325.
doi: 10.1104/pp.17.00298
[17] Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing R A, Zhu Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017, 3: 17064.
doi: 10.1038/nplants.2017.64
[18] Lyu S, Wu W, Wang M, Meyer R S, Ndjiondjop M N, Tan L, Zhou H, Zhang J, Fu Y, Cai H, Sun C, Wing R A, Zhu Z. Genetic control of seed shattering during African rice domestication. Nat Plants, 2018, 4: 331-337.
doi: 10.1038/s41477-018-0164-3
[19] Jiang L, Ma X, Zhao S, Tang Y, Liu F, Gu P, Fu Y, Zhu Z, Cai H, Sun C, Tan L. The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell, 2019, 31: 17-36.
doi: 10.1105/tpc.18.00304
[20] Ji H S, Chu S H, Jiang W, Cho Y I, Hahn J H, Eun M Y, McCouch S R, Koh H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173: 995-1005.
doi: 10.1534/genetics.105.054031
[21] Liljegren S J, Ditta G S, Eshed Y, Savidge B, Bowman J L, Yanofsky M F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000, 404: 766-770.
doi: 10.1038/35008089
[22] Fernandez D E, Heck G R, Perry S E, Patterson S E, Bleecker A B, Fang S C. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 2000, 12: 183-198.
pmid: 10662856
[23] Mao L, Begum D, Chuang H W, Budiman M A, Szymkowiak E J, Irish E E, Wing R A. JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406: 910-913.
doi: 10.1038/35022611
[24] Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol, 2012, 158: 439-450.
[25] Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J, 2014, 77: 284-296.
doi: 10.1111/tpj.12387
[26] Onishi K, Takagi K, Kontani M, Tanaka T, Sano Y. Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome, 2007, 50: 757-766.
doi: 10.1139/G07-051
[27] Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15: 2603-2611.
doi: 10.1105/tpc.015123
[28] Kater M M, Dreni L, Colombo L. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot, 2006, 57: 3433-3444.
doi: 10.1093/jxb/erl097
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[5] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[6] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[7] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[8] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[9] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[10] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[11] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[12] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[13] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[14] 马晨雨,詹为民,李文亮,张梦迪,席章营. 玉米ZmNAOD基因的克隆与功能分析[J]. 作物学报, 2018, 44(10): 1433-1441.
[15] 刘朝显, 王久光, 梅秀鹏, 余婷婷, 王国强, 周练, 蔡一林. 玉米胚乳母本印记基因ZmVIL1的克隆及印记特性分析[J]. 作物学报, 2018, 44(03): 376-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[2] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[3] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[4] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[5] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[6] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .
[7] 孙建伟. 二氧化硫对玉米细胞过氧化氢酶活性的影响[J]. 作物学报, 2007, 33(12): 1968 -1971 .
[8] 王志琴;张耗;王学明;张自常;杨建昌. 水稻籽粒多胺浓度与米质的关系[J]. 作物学报, 2007, 33(12): 1922 -1927 .
[9] 李浩;张平平;查向东;夏先春;何中虎. 优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离[J]. 作物学报, 2007, 33(10): 1644 -1653 .
[10] 袁有禄;张天真;郭旺珍;潘家驹;R J Kohel. 陆地棉优异纤维品系的铃重和衣分的遗传及杂种优势分析(英文)[J]. 作物学报, 2002, 28(02): 196 -202 .