欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 100-110.doi: 10.3724/SP.J.1006.2019.84067

• 耕作栽培·生理生化 • 上一篇    下一篇

盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响

严青青,张巨松(),李星星,王燕提   

  1. 新疆农业大学农学院 / 教育部棉花工程研究中心, 新疆乌鲁木齐 830052
  • 收稿日期:2018-05-11 接受日期:2018-08-20 出版日期:2018-09-27 网络出版日期:2018-09-27
  • 通讯作者: 张巨松
  • 基金资助:
    本研究由国家重点研发计划项目资助(2017YFD0101605-05)

Effects of salinity stress on seed germination and root growth of seedlings in island cotton

Qing-Qing YAN,Ju-Song ZHANG(),Xing-Xing LI,Yan-Ti WANG   

  1. Agriculture College, Xinjiang Agricultural University / Research Center of Cotton Engineering, Urumqi 830052, Xinjiang, China
  • Received:2018-05-11 Accepted:2018-08-20 Published:2018-09-27 Published online:2018-09-27
  • Contact: Ju-Song ZHANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0101605-05)

摘要:

为明确海岛棉种子萌发及幼苗根系对盐胁迫的响应, 并筛选出耐盐能力较高的海岛棉品种。以新疆阿克苏地区主推海岛棉品种新海31号、新海35号、新海43号和新海48号为试材, 采用NaCl、Na2SO4以及NaCl、NaHCO3以物质的量1∶1混合分别模拟中性盐混合盐(中性盐)和碱性盐混合盐(碱性盐)两种盐类型, 胁迫处理总盐浓度(Na +)为0、120、180、240、300、360 mmol L -1, 研究了盐胁迫下海岛棉种子萌发和幼苗根系生长参数。结果表明, 在两种盐类型下, 随着盐浓度的增加, 海岛棉种子的萌发参数、生物量、根冠比、盐敏感指数、盐耐受指数、根系长度、根系表面积及根系体积均呈下降趋势; 高盐浓度下, 海岛棉株高、根系生物量及茎叶生物量与盐浓度呈显著负相关, 说明高盐环境抑制了棉种发芽及幼苗的正常生长。120 mmol L -1浓度下, 中性盐处理的新海48号的根系总长度比对照无显著增加, 其余品种均有显著增加, 各品种根系总体积与总表面积均无显著差异, 低盐促进了各品种细根(d≤0.5 mm)的伸长及生长, 新海43号的中根(0.5<d≤2.0 mm)长度比CK增加显著, 导致此品种根系的总体积与总表面积有显著增加; 碱性盐处理的根系总长度、表面积及体积除新海31号与对照差异不显著外, 其余品种均有显著降低。180~240 mmol L -1浓度下, 中性盐处理的根系总长度、表面积及体积与对照相比除新海43号有显著下降外, 各品种均差异不显著; 碱性盐处理的各品种均是下降显著, 其中新海35号的根系总长度下降幅度比其余品种缓慢。300~360 mmol L -1浓度下, 两种盐处理的各品种的根系总长度、体积与表面积均急剧下降。碱性盐胁迫比中性盐胁迫下降的趋势更为显著。本试验条件下, 海岛棉幼苗正常生长所能承受的盐浓度为240 mmol L -1, 但碱性盐对于海岛棉幼苗的伤害远大于中性盐, 供试品种耐盐碱程度为新海35号>新海43号>新海31号>新海48号。

关键词: 中性盐, 碱性盐, 海岛棉, 种子萌发, 幼苗生长, 根系形态

Abstract:

In order to determine the response of seed germination and seedling root system of island cotton to salt stress, and to screen out island cotton varieties with high salt tolerance, an experiment was conducted using main sea island cotton varieties Xinhai 31, Xinhai 35, Xinhai 43, and Xinhai 48 grown in Xinxiang Aksu area, with treatment of neutral salt (neutral salt) mixed with NaCl, Na2SO4 at 1:1 of mole ratio and treatment of alkali salt (alkaline salt) mixed with NaCl and NaHCO3 at 1:1 of mole ratio, Total salt concentration (Na +) was 0, 120, 180, 240, 300, and 360 mmol L -1. Seed germination and seedling root growth parameters of island cotton under the stress were measured. The germination parameters, biomass, root and crown ratio, salt sensitivity index, salt tolerance index, root length, root surface area and root volume of the island cotton seeds decreased with the increase of salt concentration. Moreover, under high salt concentration, there was a significant negative correlation of plant height, root biomass, stem and leaf biomass with salt concentration, indicating that high salt environment inhibited cotton seed germination and normal growth of seedlings. Under the concentration of 120 mmol L -1, the total length of the root system of Xinhai 48 treated with neutral salt did not increase significantly compared with that of the control group, while that of the other varieties increased significantly. There was no significant difference in the total volume and total surface area of the roots. The low salt concentration promoted the elongation and growth of the fine roots (d ≤ 0.5 mm). The middle root (0.5 < d ≤ 2.0 mm) of Xinhai 43 increased significantly than that of CK, resulting in a significant increase in total root volume and total surface area. The total length, surface area, and volume in alkaline salt treatment were not significantly different from those of Xinhai 31 and the control, while decreased significantly in other varieties. At the concentration of 180-240 mmol L -1, the total length, surface area and volume of roots in neutral salt treatment had a significant decrease compared with these of the control except for Xinhai 43; there was no significant difference among all varieties; lot a decrease in alkaline salt treatment. Among them, the total length of the roots of Xinhai 35 decreased more slowly than that of other varieties. At the concentration of 300-360 mmol L -1, the total root length, volume and surface area of the two salt varieties dropped sharply. The alkaline salt stress had a more significant decrease effect than the neutral salt stress. Under the conditions of this experiment, the normal growth of island cotton seedlings could withstand the salt concentration of 240 mmol L -1, but the damage of alkaline salt to island cotton seedlings was much greater than that of neutral salt. The order of salt tolerance of the tested varieties was Xinhai 35, Xinhai 43, Xinhai 31, and Xinhai 48.

Key words: neutral salt, basic salt, island cotton, seed germination, seedling growth, root morphology

图1

盐碱胁迫对海岛棉种子发芽率的影响 XH31: 新海31号; XH35: 新海35号; XH43: 新海43号; XH48: 新海48号。"

图2

盐碱胁迫对海岛棉种子发芽势的影响 XH31: 新海31号; XH35: 新海35号; XH43: 新海43号; XH48: 新海48号。"

图3

盐碱胁迫对海岛棉种子发芽指数的影响 XH31: 新海31号; XH35: 新海35号 ; XH43: 新海43号; XH48: 新海48号。"

图4

盐碱浓度与株高、根干重及茎叶干重的回归分析 XH31: 新海31号; XH35: 新海35号; XH43: 新海43号; XH48: 新海48号。"

图5

盐碱胁迫对海岛棉幼苗根冠比的影响 XH31: 新海31号; XH35: 新海35号 ; XH43: 新海43号; XH48: 新海48号。"

表1

盐碱浓度(x, mmol L-1)与海岛棉株高、根干重及茎叶干重的特征分析"

性状
Trait (y)
盐类型
Salt genre
品种
Variety
回归方程
Regression equation
R2
株高
Plant height
(cm)
中性盐
Neutral salt
XH31 y = -0.030x+13.7 0.75**
XH35 y = -0.035x+14.6 0.89**
XH43 y = -0.030x+13.1 0.73**
XH48 y = -0.024x+13.1 0.62**
碱性盐
Basic salt
XH31 y = -0.036x+12.8 0.91**
XH35 y = -0.042x+14.0 0.88**
XH43 y = -0.031x+11.4 0.91**
XH48 y = -0.035x+14.1 0.69**
根干重
Root dry weight
(mg)
中性盐
Neutral salt
XH31 y = -0.024x+13.4 0.90**
XH35 y = -0.026x+17.2 0.75**
XH43 y = -0.025x+14.5 0.79**
XH48 y = -0.024x+11.8 0.91**
性状
Trait (y)
盐类型
Salt genre
品种
Variety
回归方程
Regression equation
R2
碱性盐
Basic salt
XH31 y = -0.034x+13.0 0.91**
XH35 y = -0.040x+17.1 0.89**
XH43 y = -0.035x+13.8 0.89**
XH48 y = -0.031x+11.0 0.95**
茎、叶干重
Stem and leaf dry weight (mg)
中性盐
Neutral salt
XH31 y = -0.026x+67.0 0.24**
XH35 y = -0.022x+64.2 0.33**
XH43 y = -0.015x+63.1 0.09
XH48 y = -0.035x+63.8 0.37**
碱性盐
Basic salt
XH31 y = -0.110x+76.8 0.23*
XH35 y = -0.019x+59.9 0.06
XH43 y = -0.003x+62.5 0.01
XH48 y = -0.119x+78.1 0.29**

图6

盐碱胁迫对海岛棉根系盐敏感指数的影响 XH31: 新海31号; XH35: 新海35号; XH43: 新海43号; XH48: 新海48号。"

图7

盐碱胁迫对海岛棉根系盐耐受指数的影响 XH31: 新海31号; XH35: 新海35号; XH43: 新海43号; XH48: 新海48号。"

Table 2

Effects of saline-alkali stress on root morphological parameters of island cotton varieties"

Table 3

Effcts of saline-alkali stress on length of roots at different stem stages"

[1] 陈镭, 侯东升, 郭玲玲, 司爱军, 邓福军 . 新疆盐碱地形成特点及改良措施. 新疆农垦科技, 2009,32(5):56-57.
doi: 10.3969/j.issn.1001-361X.2009.05.029
Chen L, Hou D S, Guo L L, Si A J, Deng F J . Formation characteristics and improvement measures of saline and alkaline land in Xinjiang. Xinjiang Farmland Reclamation Sci Tech, 2009,32(5):56-57 (in Chinese).
doi: 10.3969/j.issn.1001-361X.2009.05.029
[2] 杨淑萍, 危常州, 梁永超 . 盐胁迫对海岛棉不同基因型幼苗生长及生理生态特征的影响. 生态学报, 2010,30:2322-2331.
Yang S P, Wei C Z, Liang Y C . Effects of NaCl stress on growth and eco-physiological characteristics of different in sea island cotton genotypes in seedlings. Acta Ecol Sin, 2010,30:2322-2331 (in Chinese with English abstract).
[3] Farooq M, Hussain M, Wakeel A, Siddique K H M . Salt stress in maize: effects, resistance mechanisms, and management: a review. Agron Sustain Dev, 2015,35:461-481.
doi: 10.1007/s13593-015-0287-0
[4] 王永娟, 周妍, 徐明, 徐靖宇, 金晓飞, 石连旋 . 盐胁迫对大豆种子萌发及矿质元素变化的影响. 生态学杂志, 2015,34:1565-1571.
Wang Y J, Zhou Y, Xu M, Xu J Y, Jin X F, Shi L X . Germination parameters and mineral levels in soybean plants under salt stress. Chin J Ecol, 2015,34:1565-1571 (in Chinese with English abstract).
[5] 周妍 . 盐胁迫对大豆种子萌发、离子平衡及可溶性糖含量影响的研究. 东北师范大学硕士学位论文, 吉林长春, 2014.
Zhou Y . Research on Germination, Ionic Balance and Soluble Sugars Contention of Glycine max under Saline Stress. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2014 (in Chinese with English abstract).
[6] Harfi M E, Hanine H, Rizki H, Latrache H, Nabloussi A . Effect of drought and salt stresses on germination and early seedling growth of different color-seeds of sesame (Sesamum indicum L.). Int J Agric Biol, 2016,18:1088-1094.
[7] Bahrami H, Razmjoo J . Effect of salinity stress (NaCl) on germination and early seedling growth of ten sesame cultivars (Sesamum indicum L.). Int J AgriScience, 2012,2:546-549.
doi: 10.1111/1467-9442.00073
[8] McCormack M L, Dickie I A, Eissenstat D M, Fahey T J, Fernandez C W, Guo D L, Helmisaari H S, Hobbie E A, Iversen C M, Jackson R B, Leppalammi-Kujansuu J, Norby R J, Phillips R P, Pregitzer K S, Pritchard S G, Rewald B, Zadworny M . Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol, 2015,207:505-518.
doi: 10.1111/nph.13363 pmid: 25756288
[9] Schleiff U . Conceptual approach to lateral salinity gradients around roots of salt-sensitive and salt-tolerant crops under irrigation conditions. Ecol Questions, 2011,14:35-38.
doi: 10.12775/v10090-011-0009-4
[10] 刘正祥, 张华新, 杨秀艳, 刘涛, 狄文彬 . NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性. 生态学报, 2014,34:326-336.
doi: 10.5846/stxb201303270530
Liu Z X, Zhang H X, Yang X Y, Liu T, Di W B . Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress. Acta Ecol Sin, 2014,34:326-336 (in Chinese with English abstract).
doi: 10.5846/stxb201303270530
[11] Qados A M S A . Effect of salt stress on plant growth and metabolism of bean plant Vicia faba(L.). J Saudi Soc Agric Sci, 2011,10:7-15.
doi: 10.1016/j.jssas.2010.06.002
[12] Lu Y, Lei J Q, Zeng F J, Zhang B, Liu G J, Liu B . Effect of NaCl-induced changes in growth, photosynthetic characteristics, water status and enzymatic antioxidant system of Calligonum caput-medusae seedlings. Photosynthetica, 2016,55:96-100.
[13] 杨淑萍, 危常州, 梁永超 . 盐胁迫对不同基因型海岛棉种子萌发特性的影响. 中国棉花, 2012,39(12):6-10.
doi: 1000-632X(2012)12-0006-05
Yang S P, Wei C Z, Liang Y C . Effects of NaCl stress on characteristics of seed germination of sea island cotton with different genotypes. China Cott, 2012,39(12):6-10 (in Chinese).
doi: 1000-632X(2012)12-0006-05
[14] 王树凤, 胡韵雪, 孙海菁, 施翔, 潘红伟, 陈益泰 . 盐胁迫对2种栎树苗期生长和根系生长发育的影响. 生态学报, 2014,34:1021-1029.
doi: 10.5846/stxb201209291363
Wang S F, Hu Y X, Sun H J, Shi X, Pan H W, Chen Y T . Effects of salt stress on growth and root development of two oak seedlings. Acta Ecol Sin, 2014,34:1021-1029 (in Chinese with English abstract).
doi: 10.5846/stxb201209291363
[15] Duan D . Effects of salt and water stress on the germination of Chenopodium glaucum L. seed. Chin J Eco-Agric, 2005,36:793-800.
[16] Ibrahim D . Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz Arch Biol Techn, 2008,51:897-902.
doi: 10.1590/S1516-89132008000500004
[17] Byrt C S, Munns R, Burton R A, Gilliham M, Wege S . Root cell wall solutions for crop plants in saline soils. Plant Sci, 2018,269:47-55.
doi: 10.1016/j.plantsci.2017.12.012 pmid: 29606216
[18] Llanes A, Andrade A, Masciarelli O, Alemano S, Luna V . Drought and salinity alter endogenous hormonal profiles at the seed germination phase. Seed Sci Res, 2016,26:1-13.
doi: 10.1017/S0960258515000331
[19] 郭剑, 李彩凤, 刘磊, 桑利敏, 陈明, 徐影, 盖志佳, 王玉波 . Na2CO3胁迫下甜菜幼苗根际壤环境因子的变化及其相关性. 应用生态学报, 2016,27:904-910.
doi: 10.13287/j.1001-9332.201603.001
Guo J, Li C F, Liu L, Sang L M, Chen M, Xu Y, Gai Z J, Wang Y B . Variation of rhizosphere environmental factors of sugarbeet seedlings under Na2CO3 stress and their correlation. Chin J Appl Ecol, 2016,27:904-910 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201603.001
[20] Guo W Q, Zhang P T, Li C H, Yin J M, Han X Y . Recovery of root growth and physiological characters in cotton after salt stress relief. Chil J Agric Res, 2015,75:85-91.
doi: 10.4067/S0718-58392015000100012
[21] 王佺珍, 刘倩, 高娅妮, 柳旭 . 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017,37:5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X . Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecol Sin, 2017,37:5565-5577 (in Chinese with English abstract).
[22] 于天一, 王春晓, 孙学武, 孙秀山, 郑永美, 吴正锋, 沈浦, 王才斌 . 碱胁迫对花生幼苗根系形态及干物质累积的影响. 中国油料作物学报, 2017,39(2):190-196.
doi: 10.7505/j.issn.1007-9084.2017.02.008
Yu T Y, Wang C X, Sun X W, Sun X S, Zheng Y M, Wu Z F, Shen P, Wang C B . Effects of alkaline stress on root morphology and dry matter accumulation characteristics of peanut seedling. Chin J Oil Crop Sci, 2017,39(2):190-196 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2017.02.008
[23] 张华新, 刘正祥, 刘秋芳 . 盐胁迫下树种芽苗期生长及其耐盐性. 生态学报, 2009,29:2263-2271.
doi: 10.3321/j.issn:1000-0933.2009.05.010
Zhang H X, Liu Z X, Liu Q F . Seedling growth and salt tolerance of tree species under NaCl stress. Acta Ecol Sin, 2009,29:2263-2271 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-0933.2009.05.010
[24] Mai W X, Tian C Y, Li L . Localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil. J Arid Land, 2014,6:361-370.
doi: 10.1007/s40333-014-0001-0
[25] 段九菊, 郭世荣, 康云艳, 李璟, 刘香娥 . 盐胁迫对黄瓜芽苗期根系生长和多胺代谢的影响. 应用生态学报, 2008,19:57-64.
Duan J J, Guo S R, Kang Y Y, Li J, Liu X E . Effects of salt stress on cucumber seedling root growth and polyamine metabolism. Chin J Appl Ecol, 2008,19:57-64 (in Chinese with English abstract).
[26] 张晓磊, 刘晓静, 齐敏兴, 刘艳楠, 蒯佳林 . 混合盐碱对紫花苜蓿苗期根系特征的影响. 中国生态农业学报, 2013,21:340-346.
doi: 10.3724/SP.J.1011.2013.00340
Zhang X L, Liu X J, Qi M X, Liu Y N, Kuai J L . Alfalfa seeding root characteristics under complex saline-alkali stress. Chin J Eco-Agric, 2013,21:340-346 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2013.00340
[27] 刘新伟, 王巧兰, 段碧辉, 林亚蒙, 赵小虎, 胡承孝, 赵竹青 . 亚硒酸盐对油菜幼苗硒吸收、根系形态及生理指标的影响. 应用生态学报, 2015,26:2050-2056.
Liu X W, Wang Q L, Duan B H, Lin Y M, Zhao X H, Hu C X, Zhao Z Q . Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings. Chin J Appl Ecol, 2015,26:2050-2056 (in Chinese with English abstract).
[28] 潘雄波, 向丽霞, 胡晓辉, 任文奇, 张丽, 倪新欣 . 外源亚精胺对盐碱胁迫下番茄幼苗根系线粒体功能的影响. 应用生态学报, 2016,27:491-498.
Pan X B, Xiang L X, Hu X H, Ren W Q, Zhang L, Ni X X . Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress. Chin J Appl Ecol, 2016,27:491-498 (in Chinese with English abstract).
[29] Guo P, Wei H X, Zhang W J, Bao Y J . Physiological responses of alfalfa to high-level salt stress: root ion flux and stomatal characteristics. Int J Agric Biol, 2016,18:125-133.
[1] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[2] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[3] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[4] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[5] 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306.
[6] 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337.
[7] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[8] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[9] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[10] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[11] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[12] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[13] 田润苗, 张雪海, 汤继华, 白光红, 付志远. 玉米种子萌发相关性状的全基因组关联分析[J]. 作物学报, 2018, 44(05): 672-685.
[14] 周泉, 王龙昌, 马淑敏, 张小短, 邢毅, 张赛. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J]. 作物学报, 2018, 44(03): 431-441.
[15] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!