欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 91-99.doi: 10.3724/SP.J.1006.2019.84061

• 耕作栽培·生理生化 • 上一篇    下一篇

荫蔽锻炼对大豆苗期光合特性的影响

高阳,刘卫国(),李淑贤,刘婷,周涛,杜勇利,张熠,李碧琴,杨文钰   

  1. 四川农业大学生态农业研究所 / 农业部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2018-04-27 接受日期:2018-08-20 出版日期:2018-09-20 网络出版日期:2018-09-20
  • 通讯作者: 刘卫国
  • 基金资助:
    本研究由国家自然科学基金项目(31671626)资助

Effect of shade priming on photosynthetic characteristics of soybean seedlings

Yang GAO,Wei-Guo LIU(),Shu-Xian LI,Ting LIU,Tao ZHOU,Yong-Li DU,Yi ZHANG,Bi-Qin LI,Wen-Yu YANG   

  1. Institute of Ecological Agriculture, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2018-04-27 Accepted:2018-08-20 Published:2018-09-20 Published online:2018-09-20
  • Contact: Wei-Guo LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31671626).

摘要:

荫蔽是影响间套作大豆产量进一步提高的限制因素。为探究荫蔽锻炼对大豆叶片光合、荧光特性的影响, 本研究采用盆栽试验, 分别用远红光LED灯(λ=730 nm)、30%透光率遮阳网模拟荫蔽信号和荫蔽胁迫, 分锻炼(S1)-恢复(S2)-胁迫(S3) 3个阶段, 以全过程自然光照为对照(LLLL), 设荫蔽信号锻炼(LFLS)、荫蔽胁迫锻炼(LSLS)、不锻炼(LLLS) 3个处理, 分析其S3阶段遭受荫蔽胁迫时叶片光合色素含量、光合参数以及叶绿素荧光参数的响应特征。结果表明, LFLS和LSLS较LLLS老叶和成熟叶叶绿素a、叶绿素b、类胡萝卜素含量以及叶绿素总含量显著增加, 老叶和新叶叶绿素a/b显著下降。除LSLS成熟叶外, 各叶位净光合速率、气孔导度均较未锻炼处理显著增加, 老叶和成熟叶锻炼与未锻炼处理胞间二氧化碳浓度差异不显著。与对照相比, 无论锻炼与否, 后期荫蔽使Foqp、NPQ、ΦPSII、ETR降低, 而Fv/FmFv'/Fm'则升高, 其中, S1阶段的锻炼处理较未锻炼处理Fo下降的幅度更小; 老叶qp较对照降低幅度依次为LFLS>LLLS>LSLS, 成熟叶为LSLS<LFLS<LLLS, 新叶为LSLS>LFLS>LLLS; ΦPSII、ETR均较对照降低但处理间差异不显著; LLLS、LFLS、LSLS新叶中Fv'/Fm'则分别比对照增加6.51%、8.79%和12.05% (P<0.05), 锻炼后增加幅度更大。由此可见, 通过荫蔽锻炼, 大豆能通过光合特征的可塑性来适应光环境并表现出更强的荫蔽耐受能力。

关键词: 荫蔽锻炼, 大豆, 光合, 叶绿素荧光

Abstract:

Shade stress limits the further increase of soybean yield in intercropping. In order to investigate the effect of shade priming on photosynthetic and chlorophyll fluorescence characteristics of soybean seedlings, the growth of plants were undergone three stages of shade priming (S1), light recovery (S2), and shade stress (S3). The shade priming included shade signal (increasing the ration of far red with LED lamp of 730 nm) and shade stress. The treatments of the experiment were natural light (LLLL), shade-signal priming (LFLS), shade-stress priming (LSLS), and no priming (LLLS). The results showed that compared with LLLS, shade priming enhanced chlorophyll a, chlorophyll b, carotenoid contents and total chlorophyll content in old and middle-age leaves significantly, while reduced chlorophyll a/b in old and young leaves. Except for the middle-age leaves of LSLS, both the net photosynthetic rate and stomatal conductance of each leaf position of LFLS and LSLS were significantly increased. And there was no significant difference in intercellular carbon dioxide concentration in old and middle-age leaves between the primed plants and the non-primed plants. Compared with the control (LLLL), Fo, qp, NPQ, ΦPSII, ETR decreased, while Fv/Fm and Fv'/Fm' increased. Among them, the reduction of Fo in the primed was smaller than that in the control. The trend of the reduction of qp was LFLS > LLLS > LSLS in old leaves, while LSLS < LFLS < LLLS in middle-age leaves and LSLS > LFLS > LLLS in young leaves. ΦPSII, ETR considerably decreased as compared with the control, but there was no significant difference between the primed plants and the non-primed plants. Compared with LLLL, the increase of Fv'/Fm' in young leaves of the primed plants was greater than that of the non-primed plants, with the increase of 6.51%, 8.79%, and 12.05% (P < 0.05) in LLLS, LFLS, and LSLS, respectively. Therefore, by shade priming at S1, soybeans adapted to the light environment through the plasticity of photosynthetic characteristics and exhibited a stronger tolerance to shade stress occurring during S3.

Key words: shade priming, soybean, photosynthetic characteristics, chlorophyll fluorescence

表1

试验设计"

处理
Treatment
第1阶段S1 (V1-V2)
The first stage (V1-V2)
第2阶段S2 (V3-V5)
The second stage (V3-V5)
第3阶段S3 (V6-V8)
The third stage (V6-V8)
LLLL Light Light Light
LLLS Light Light Shade
LFLS Shade signal Light Shade
LSLS Shade Light Shade

表2

不同荫蔽锻炼处理对大豆叶片光合色素的影响"

叶位
Leaf position
处理
Treatment
叶绿素a含量
Chlorophyll a content
(mg g-1)
叶绿素b含量
Chlorophyll b content
(mg g-1)
叶绿素总含量Chlorophyll content
(mg g-1)
类胡萝卜素含量Carotenoid content
(mg g-1)
叶绿素a/b Chlorophyll a/b
老叶 LLLL 1.522±0.000 a 0.331±0.003 b 1.853±0.003 a 0.451±0.002 b 4.596±0.048 a
Old leaves LLLS 1.217±0.033 b 0.278±0.004 c 1.494±0.037 c 0.400±0.008 c 4.384±0.074 a
LFLS 1.479±0.024 a 0.380±0.018 a 1.859±0.006 a 0.507±0.018 a 3.911±0.243 b
LSLS 1.278±0.066 b 0.366±0.018 ab 1.645±0.083 b 0.424±0.020 bc 3.487±0.040 b
成熟叶 LLLL 1.754±0.032 b 0.408±0.002 c 2.162±0.033 c 0.472±0.011 d 4.303±0.075 a
Middle-age LLLS 1.577±0.008 c 0.466±0.001 b 2.043±0.009 d 0.503±0.004 c 3.387±0.013 b
leaves LFLS 1.749±0.010 b 0.543±0.013 a 2.292±0.022 b 0.536±0.009 b 3.222±0.059 b
LSLS 1.887±0.022 a 0.562±0.003 a 2.449±0.024 a 0.627±0.007 a 3.353±0.023 b
新叶 LLLL 1.901±0.033 b 0.533±0.008 b 2.434±0.039 b 0.648±0.014 b 3.570±0.045 a
Young leaves LLLS 2.670±0.151 a 0.819±0.044 a 3.489±0.195 a 0.844±0.052 a 3.258±0.022 b
LFLS 2.458±0.040 a 0.819±0.012 a 3.277±0.051 a 0.769±0.020 a 3.000±0.027 d
LSLS 2.493±0.028 a 0.796±0.012 a 3.289±0.040 a 0.813±0.009 a 3.132±0.016 c

表3

不同荫蔽锻炼处理对大豆叶片光合参数的影响"

叶位
Leaf position
处理
Treatment
净光合速率
Net photosynthetic
rate (Pn)
(μmol CO2 m-2 s-1)
气孔导度
Stomatal conductance (Gs)
(mol H2O m-2 s-1)
胞间二氧化碳浓度
Intercellular CO2
concentration (Ci)
(μmol CO2 mol-1)
蒸腾速率
Transpiration rate (Tr)
(mmol H2O m-2 s-1)
老叶 LLLL 4.04±0.13 d 0.167±0.004 a 339.71±1.45 a 3.57±0.12 a
Old leaves LLLS 5.13±0.11 c 0.086±0.001 d 284.76±1.08 b 1.59±0.03 d
LFLS 6.32±0.10 a 0.122±0.007 b 289.75±4.73 b 3.16±0.13 b
LSLS 5.71±0.03 b 0.102±0.001 c 288.90±0.49 b 2.06±0.06 c
成熟叶 LLLL 4.62±0.03 d 0.044±0.001 c 212.03±4.55 b 1.14±0.01 c
Middle-age leaves LLLS 9.78±0.09 b 0.144±0.006 b 264.41±2.98 a 2.29±0.09 b
LFLS 10.81±0.12 a 0.163±0.001 a 265.53±1.34 a 2.57±0.06 b
LSLS 8.33±0.08 c 0.140±0.008 b 267.67±4.27 a 5.13±0.22 a
新叶 LLLL 13.74±0.34 a 0.147±0.008 a 213.21±10.57 a 3.34±0.05 a
Young leaves LLLS 8.99±0.09 d 0.078±0.001 c 186.93±0.44 b 2.19±0.05 b
LFLS 12.36±0.29 b 0.146±0.004 a 229.48±0.35 a 3.46±0.15 a
LSLS 11.29±0.21 c 0.129±0.003 b 223.94±1.73 a 3.40±0.15 a

表4

不同荫蔽锻炼处理对大豆叶片叶绿素荧光参数的影响"

处理
Treatment
Fo Fv/Fm Fv'/Fm' ΦPSII NPQ qp ETR
老叶 Old leaves
LLLL 3853.0±287.1 a 0.753±0.005 b 0.515±0.019 b 0.229±0.006 a 2.049±0.291 a 0.450±0.006 a 96.32±2.43 a
LLLS 2694.0±108.3 c 0.809±0.004 a 0.593±0.012 a 0.204±0.002 b 1.960±0.097 a 0.357±0.002 b 85.68±0.64 a
LFLS 3289.5±22.8 b 0.815±0.003 a 0.605±0.001 a 0.204±0.002 b 1.892±0.059 a 0.337±0.002 b 85.47±0.85 a
LSLS 2899.3±84.0 bc 0.789±0.004 ab 0.537±0.013 b 0.209±0.001 b 2.285±0.146 a 0.391±0.001 b 87.64±0.37 a
成熟叶 Middle-age leaves
LLLL 3677.0±110.9 a 0.778±0.007 b 0.544±0.001 c 0.239±0.003 a 2.268±0.055 a 0.460±0.003 a 100.17±1.33 a
LLLS 2749.6±37.8 c 0.818±0.003 a 0.616±0.012 a 0.218±0.003 b 1.821±0.101 b 0.355±0.003 b 91.56±1.28 b
LFLS 3037.0±101.0 b 0.807±0.002 a 0.600±0.008 a 0.220±0.002 b 1.810±0.126 b 0.367±0.002 b 92.19±0.85 b
LSLS 2837.0±12.7 bc 0.811±0.001 a 0.571±0.005 b 0.213±0.002 b 2.134±0.034 a 0.373±0.002 b 89.25±0.85 a
新叶 Young leaves
LLLL 4074.3±93.8 a 0.749±0.010 b 0.512±0.012 b 0.263±0.003 a 2.292±0.261 a 0.515±0.003 a 110.60±1.46 a
LLLS 3329.3±29.9 c 0.788±0.003 a 0.545±0.012 a 0.249±0.005 b 2.141±0.098 a 0.457±0.005 b 104.44±2.06 a
LFLS 3612.3±118.6 b 0.785±0.005 a 0.557±0.010 a 0.237±0.006 b 1.933±0.035 a 0.427±0.006 b 99.40±2.48 a
LSLS 3225.3±76.9 c 0.792±0.002 a 0.573±0.004 a 0.236±0.003 b 1.855±0.033 a 0.412±0.003 b 99.12±1.28 a
[1] Deryng D, Conway D, Ramankutty N, Price J, Warren R . Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett, 2014,9:2033-2053.
doi: 10.1088/1748-9326/9/3/034011
[2] Loreti E, Van V H, Perata P . Plant responses to flooding stress. Curr Opin Plant Biol, 2016,33:64-71.
doi: 10.1016/j.pbi.2016.06.005 pmid: 27322538
[3] Wang X, Cai J, Liu F L, Jin M, Yu H X, Jiang D, Wollenweber B, Dai T, Cao W . Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. J Cereal Sci, 2012, 55:331-336.
doi: 10.1016/j.jcs.2012.01.004
[4] Liu S, Li X, Larsen D H, Zhu X, Song F, Liu F . Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat. J Agron Crop Sci, 2017,203:29-40.
doi: 10.1111/jac.12190
[5] Wang X, Vignjevic M, Liu F L, Jacobsen S, Jiang D, Wollenweber B . Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul, 2015,75:677-687.
doi: 10.1007/s10725-014-9969-x
[6] Li C Y, Jiang D, Wollenweber B, Li Y, Dai T B, Cao W X . Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci, 2011,180:672-678.
doi: 10.1016/j.plantsci.2011.01.009
[7] Cano E A, Bolarin M C, Perezalfocea F, Caro M . Effect of NaCl priming in increased salt tolerance in tomato. J Hortic Sci, 1991,66:621-628.
doi: 10.1080/00221589.1991.11516192
[8] Ali Q, Daud M K, Haider M Z, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Faisal S, Deeba F, Ali I, Zhu S . Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem, 2017,119:50-58.
doi: 10.1016/j.plaphy.2017.08.010 pmid: 28843888
[9] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰 . 发展套作大豆, 振兴大豆产业. 大豆科学, 2008,27:1-7.
doi: 10.11861/j.issn.1000-9841.2008.01.0001
Yang W Y, Yong T W, Ren W J, Fan G Q, Mou J Y, Lu X L . Develop relay-planting soybean, revitalize soybean industry. Soybean Sci, 2008,27:1-7 (in Chinese with English abstract).
doi: 10.11861/j.issn.1000-9841.2008.01.0001
[10] 杨文钰 . 套作大豆优势突出农民欢迎发展潜力巨大: 国家大豆产业体系专家考察四川套作大豆纪实. 大豆科技, 2009, ( 6):14-15.
Yang W Y . Intercropping soybean is welcomed by farmers for highlighted superiority and great potential for development: the national soybean industry experts inspect the Sichuan intercropping soybeans. Soybean Sci Technol, 2009, ( 6):14-15 (in Chinese).
[11] 杨文钰, 张含彬, 牟锦毅, 任万军, 雍太文, 李兴佐, 陈平, 陈文 . 南方丘陵地区旱地新三熟麦/玉/豆高效栽培技术. 作物杂志, 2006, ( 5):43-44.
doi: 10.3969/j.issn.1001-7283.2006.05.015
Yang W Y, Zhang H B, Mou J Y, Ren W J, Yong T W, Li X Z, Chen P, Chen W . High-efficient cultivation techniques of new third-cropping wheat/maize/soybean in dryland in South China hilly region. Crops, 2006, ( 5):43-44 (in Chinese).
doi: 10.3969/j.issn.1001-7283.2006.05.015
[12] Xu C L, Tao H B, Wang P, Wang Z L . Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum, L.) due to the delaying of leaf senescence. J Integr Agric, 2016,15:63-75.
[13] 孙建磊, 王崇启, 肖守华, 高超, 李利斌, 曹齐卫, 王晓, 董玉梅, 焦自高 . 弱光对黄瓜幼苗光合特性及Rubisco酶的影响. 核农学报, 2017,31:1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200
Sun J L, Wang C Q, Xiao S H, Gao C, Li L B, Cao Q W, Wang X, Dong Y M, Jiao Z G . Effect of low light on photosynthesis and Rubisco of cucumber seedlings. J Nucl Agric Sci, 2017,31:1200-1209 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2017.06.1200
[14] 李彩斌, 郭华春 . 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析. 中国生态农业学报, 2017,25:1181-1189.
doi: 10.13930/j.cnki.cjea.170177
Li C B, Guo H C . Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition. Chin J Eco-Agric, 2017,25:1181-1189 (in Chinese with English abstract).
doi: 10.13930/j.cnki.cjea.170177
[15] 陈德良, 陶月良, 吴友贵, 程瑶, 夏家天 . 遮荫对百山祖冷杉光合特性和叶绿素荧光参数的影响. 核农学报, 2016,30:2056-2064.
doi: 10.11869/j.issn.100-8551.2016.10.2056
Chen D L, Tao Y L, Wu Y G, Cheng Y, Xia J T . Effect of shade on the photosynthetic characteristics and chlorophyll fluorescence parameters of Abies beshanzuensis M. H. Wu. J Nucl Agric Sci, 2016,30:2056-2064 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2016.10.2056
[16] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰 . 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015,48:2497-2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y . Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Sci Agric Sin, 2015,48:2497-2507 (in Chinese with English abstract).
[17] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒 . 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学, 2017,50:792-801.
doi: 10.3864/j.issn.0578-1752.2017.05.002
Sun Z D, Zhang Z P, Cai Z Y, Zeng W Y, Lai Z G, Chen H Z, Yang S Z, Tang X M, Su Y Z, Gai J Y . Establishment of an evaluation system of shade tolerance in soybean and its variation in Southern China germplasm population. Sci Agric Sin, 2017,50:792-801 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.05.002
[18] Fehr W R, Caviness C E . Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1-11.
[19] Arnon D I . Copper enzymes in isolated chloroplasts. Poly- phenoloxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[20] Wang X, Liu F L, Jiang D . Priming: a promising strategy for crop production in response to future climate. J Integr Agric, 2017,16:2709-2716.
doi: 10.1016/S2095-3119(17)61786-6
[21] Bruce T J A, Matthes M C, Napier J A, Pickett J A . Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci, 2007,173:603-608.
doi: 10.1016/j.plantsci.2007.09.002
[22] Chinnusamy V, Zhu J K . Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009,12:133-139.
doi: 10.1016/j.pbi.2008.12.006 pmid: 3139470
[23] Voityuk A A, Marcus R A, Michelbeyerle M E . On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor. Proc Natl Acad Sci USA, 2014,111:5219-5224.
doi: 10.1073/pnas.1402025111 pmid: 24639509
[24] Lorrain S, Allen T, Duek P D, Lorrain S, Allen T, Duek P D, Whitelam G C, Fankhauser C . Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 2008,53:312-323.
doi: 10.1111/j.1365-313X.2007.03341.x pmid: 18047474
[25] Franklin K A . Shade avoidance. New Phytol, 2008,179:930-944.
doi: 10.1111/nph.2008.179.issue-4
[26] Duek P D, Fankhauser C . bHLH class transcription factors take centre stage in phytochrome signaling. Trends Plant Sci, 2005,10:51-54.
doi: 10.1016/j.tplants.2004.12.005 pmid: 15708340
[27] Procko C, Crenshaw C M, Ljung K, Noel J P, Chory J . Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol, 2014,165:1285-1301.
doi: 10.1104/pp.114.241844 pmid: 24891610
[28] Devlin P F, Yanovsky M J, Kay S A . A genomic analysis of the shade avoidance response in arabidopsis. Plant Physiol, 2003,133:1617-1629.
doi: 10.1104/pp.103.034397 pmid: 14645734
[29] Das D, St Onge K R, Voesenek L A, Pierik R, Sasidharan R . Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiol, 2016,172:718-733.
doi: 10.1104/pp.16.00725 pmid: 27329224
[30] Luo X M, Lin W H, Zhu S W, Zhu J Y, Sun Y, Fan X Y, Cheng M L, Hao Y Q, Ou E, Tian M M, Liu L J, Zhang M, Xie Q, Chong K, Wang Z Y . Integration of light and brassinosteroid signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell, 2010,19:872-883.
doi: 10.1016/j.devcel.2010.10.023 pmid: 3022420
[31] Gommers C M, Visser E J, St Onge K R, Voesenek L A, Pierik R . Shade tolerance: when growing tall is not an option. Trends Plant Sci, 2013,18:65-71.
doi: 10.1016/j.tplants.2012.09.008 pmid: 23084466
[32] Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman J M, Speed T P, Quail P H . A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet, 2013,9:e1003244.
doi: 10.1371/journal.pgen.1003244 pmid: 23382695
[33] Bassi R, Dainese P . A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem, 1992,204:317-326.
doi: 10.1111/j.1432-1033.1992.tb16640.x pmid: 1740145
[34] 崔继林 . 光合作用与生产力. 南京: 江苏科学技术出版社, 2000. pp 198-207.
Cui J L. Photosynthesis and Productivity. Nanjing: Jiangsu Scientific and Technical Publishers, 2000. pp 198-207(in Chinese).
[35] 时向东, 文志强, 刘艳芳, 王卫武 . 不同光强对作物生长影响的研究综述. 安徽农业科学, 2006,34:4216-4218.
doi: 10.3969/j.issn.0517-6611.2006.17.009
Shi X D, Wen Z Q, Liu Y F, Wang W W . Research on the effect of different light stresses on crop growth. J Anhui Agric Sci, 2006 , 34:4216-4218 (in Chinese with English abstract).
doi: 10.3969/j.issn.0517-6611.2006.17.009
[36] 杨芳, 许岳飞, 李丽群, 周禾 . 类胡萝卜素与草坪草耐荫性的研究进展. 草业与畜牧, 2011, ( 1):1-6.
doi: 10.3969/j.issn.1673-8403.2011.01.001
Yang F, Xu Y F, Li L Q, Zhou H . Carotenoids’s research progress in turfgrass shade. Pratacult Anim Husb, 2011, ( 1):1-6 (in Chinese with English abstract).
doi: 10.3969/j.issn.1673-8403.2011.01.001
[37] 徐凯, 郭延平, 张上隆 . 不同光质对草莓叶片光合作用和叶绿素荧光的影响. 中国农业科学, 2005,38:369-375.
Xu K, Guo Y P, Zhang S L . cEffect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves. Sci Agric Sin, 2005,38:369-375 (in Chinese with English abstract).
[38] 郭翠花, 高志强, 苗果园 . 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响作物学报. 作物学报, 2010,36:673-679.
doi: 10.3724/SP.J.1006.2010.00673
Guo C H, Gao Z Q, Miao G Y . Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin, 2010,36:673-679 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00673
[39] 宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵 . 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. 中国油料作物学报, 2009,31:474-479.
doi: 10.3321/j.issn:1007-9084.2009.04.013
Song Y X, Yang W Y, Li Z X, Yu X B, Guo K, Xiang D B . The effects of shading on photosynthetic and fluorescent characteristics of Soybean seedlings under maize-soybean relay cropping. Chin J Oil Crop Sci, 2009,31:474-479 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2009.04.013
[40] Reich P B, Tjoelker M G, Walters M B, Vanderklein D W, Buschena C . Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol, 2010,12:327-338.
doi: 10.1046/j.1365-2435.1998.00208.x
[41] 吴亚男 . 不同玉米品种耐阴性评价及高产群体结构. 沈阳农业大学博士学位论文,辽宁沈阳, 2014.
Wu Y N . Shade-endurance among Different Maize Varieties and High-yielding Population Structure. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2014 (in Chinese with English abstract).
[42] 熊宇, 杨再强, 薛晓萍, 李军 . 遮光处理对温室黄瓜幼龄植株叶片光合参数的影响. 中国农业气象, 2016,37:222-230.
doi: 10.3969/j.issn.1000-6362.2016.02.012
Xiong Y, Yang Z Q, Xue X P, Li J . Effect of shading on photosynthetic parameters in greenhouse cucumber leaves. Chin J Agrometeorol, 2016,37:222-230 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2016.02.012
[43] 周艳虹, 黄黎锋, 喻景权 . 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学学报, 2004,30:153-160.
doi: 10.3321/j.issn:1671-3877.2004.02.006
Zhou Y H, Huang L F, Yu J Q . Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves. J Plant Physiol Mol Biol, 2004, 30:153-160 (in Chinese with English abstract).
doi: 10.3321/j.issn:1671-3877.2004.02.006
[44] 葛亚英, 田丹青, 俞信英, 郁永明, 潘刚敏, 刘晓静 . 光合荧光参数等指标对室内悬挂植物12个品种的耐荫性评价. 浙江农业学报, 2013,25:483-487.
doi: 10.3969/j.issn.1004-1524.2013.03.12
Ge Y Y, Tian D Q, Yu X Y, Yu Y M, Pan G M, Liu X J . Evaluation on shade-tolerance of twelve indoor hanging plant species by using several indexes such as chlorophyll fluorescence parameters. Acta Agric Zhejiangensis, 2013,25:483-487 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2013.03.12
[45] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军 . 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013,37:1010-1017.
doi: 10.3724/SP.J.1258.2013.00104
Jiao N Y, Yang M K, Ning Y T, Yin F, Xu G W, Fu G Z, Li Y J . Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plant Ecol, 2013,37:1010-1017 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2013.00104
[46] 韦金河, 闻婧, 张俊, 孟力力, 陈柳, 施宇恬 . 夏季遮光对3种槭树PSII叶绿素荧光参数的影响. 江苏农业学报, 2015,31:172-179.
doi: 10.3969/j.issn.1000-4440.2015.01.027
Wei J H, Wen J, Zhang J, Meng L L, Chen L, Shi Y T . Effects of summer shading on PSII chlorophyll fluorescence parameters in three maple trees. Jiangsu J Agric Sci, 2015,31:172-179 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-4440.2015.01.027
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[5] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[6] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!