欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1038-1049.doi: 10.3724/SP.J.1006.2019.84114

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生和栽培大豆种质油脂组成特点及其与演化的关系

陈影,张晟瑞,王岚,王连铮,李斌(),孙君明()   

  1. 中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室 / 农业部农村大豆生物学重点实验室, 北京 100081
  • 收稿日期:2018-08-24 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-11
  • 通讯作者: 李斌,孙君明
  • 作者简介:E-mail: 623882855@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100201);北京市科技计划项目(Z16110000916005);中国农业科学院科技创新工程项目资助

Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions

CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin(),SUN Jun-Ming()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory for Crop Molecular Breeding / Key Laboratory of Soybean Biology, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2018-08-24 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-11
  • Contact: Bin LI,Jun-Ming SUN
  • Supported by:
    This study was supported by the National of Research and Development Program of China(2016YFD0100201);the Beijing Science and Technology Project(Z16110000916005);the Innovation Project of Chinese Academy of Agricultural Sciences.

摘要:

以58份不同类型(野生、半野生和栽培)大豆种质为材料, 利用32对SSR标记分析大豆种质间的遗传多样性和进化关系, 采用NIRS和GC方法分别分析大豆脂肪含量和脂肪酸组分含量, 研究不同类型大豆种质油脂组成特点及其与演化的关系。结果显示, 野生大豆和栽培大豆的油脂组成存在显著差异, 栽培大豆脂肪含量(平均20.8%)显著高于野生大豆(平均10.49%), 油酸含量(平均28.5%)显著高于野生大豆(平均14.37%), 而亚麻酸含量却显著低于野生大豆; 由相关性分析可知, 大豆种子中的脂肪与油酸含量显著正相关(r = 0.85 **), 而与其他脂肪酸组分极显著负相关; 油酸与所有其他脂肪酸组分均负相关, 特别是与亚麻酸和亚油酸呈极显著负相关(r = -0.90 **和-0.89 **); 油脂组成和SSR标记对不同类型大豆种质的聚类和主成分分析表明, 2种分类结果基本一致, 可分为栽培和野生2个亚群, 半野生大豆则分布于2个亚群中。由此可见, 大豆油脂组成与大豆种质的驯化程度有关, 脂肪含量和亚麻酸含量可以作为大豆演化分类的参考指标。

关键词: 野生大豆, 半野生大豆, 栽培大豆, 脂肪含量, 脂肪酸组分

Abstract:

In this study, 58 soybean accessions composed of wild, semi-wild and cultivated soybean were used to analyze the oil and fatty acid contents by the NIRs and GC methods. Their genetic diversity and domestication were also analyzed based on 32 pairs of SSR markers. There was a significant difference in oil content and fatty acid compositions between wild and cultivated soybeans. The oil content of cultivated soybean (an average of 20.8%) was significantly higher than that of wild soybean (an average of 10.49%). As regards fatty acid compositions, the content of oleic acid in cultivated soybean (an average of 28.5%) was significantly higher than that of wild soybean (an average of 14.37%), on the contrary, the content of linolenic acid was lower. In cultivated soybean, the oil content positively correlated with oleic acid content (r = 0.85 **), and negatively correlated with other fatty acids. Moreover, the oleic acid content had a negative correlation with all other fatty acids, especially, with linoleic acid (r = -0.90 **) and linolenic acid (r = -0.89 **). Similar clustering results were observed in the clustering and principal component analysis based on oil compositions and SSR molecular markers showing that the soybean accessions were clustered into two main subgroups of wild and cultivated soybean, and semi-wild soybean distributed into both subgroups. Therefore, we suggest that contents of oil and fatty acid compositions are related with the domestication level in soybean, and may be used as a reference index for the evolutionary classification in soybean.

Key words: Glycine soja, Glycine gracilis, Glycine max, oil content, fatty acid components

表1

58份不同类型的大豆种质"

编号
Number
材料
Accession
类型
Category
编号
Number
材料
Accession
类型
Category
W1 ZYD2854 野生Wild SW2 ZYD00411 半野生Semi-wild
W2 G. soja N19/2006 野生Wild SW3 ZYD3612 半野生Semi-wild
W3 KT156 野生Wild SW4 ZYD00844 半野生Semi-wild
W4 ZYD00004 野生Wild SW5 ZYD0001 半野生Semi-wild
W5 ZYD2784 野生Wild SW6 ZYD00404 半野生Semi-wild
W6 ZYD1896 野生Wild SW7 F0554 半野生Semi-wild
W7 ZYD3880 野生Wild C1 晋豆39 Jindou 39 栽培Cultivated
W8 ZYD3891 野生Wild C2 中黄13 Zhonghuang 13 栽培Cultivated
W9 ZYD01694 野生Wild C3 黑科56 Heike 56 栽培Cultivated
W10 ZYD3263 野生Wild C4 东大2号 Dongda 2 栽培Cultivated
W11 G. soja N4/2006 野生Wild C5 黑河51 Heihe 51 栽培Cultivated
W12 ZYD4 野生Wild C6 冀豆12 Jidou 12 栽培Cultivated
W13 G. soja N15/2006 野生Wild C7 周豆23 Zhoudou 23 栽培Cultivated
W14 G. soja N16/2006 野生Wild C8 中黄35 Zhonghuang 35 栽培Cultivated
W15 ZYD00412 野生Wild C9 黑河44 Heihe 44 栽培Cultivated
W16 BY019 野生Wild C10 黑河33 Heihe 33 栽培Cultivated
W17 G. soja N8/2006 野生Wild C11 吉蜜豆2号Jimidou 2 栽培Cultivated
W18 G. soja N7/2006 野生Wild C12 吉育204 Jiyu 204 栽培Cultivated
W19 G. soja N6/2006 野生Wild C13 长农16 Changnong 16 栽培Cultivated
W20 ZYD00851 野生Wild C14 哈11-2541 Ha 11-2541 栽培Cultivated
W21 ZYD00410 野生Wild C15 哈12-4891 Ha 12-4891 栽培Cultivated
W22 ZYD00838 野生Wild C16 合丰50 Hefeng 50 栽培Cultivated
W23 ZYD2512 野生Wild C17 徐豆14 Xudou 14 栽培Cultivated
W24 ZYD3767 野生Wild C18 徐豆9 Xudou 9 栽培Cultivated
W25 ZYD2784 野生Wild C19 铁豆29 Tiedou 29 栽培Cultivated
W26 ZYD00033 野生Wild C20 科丰14 Kefeng 14 栽培Cultivated
W27 G. soja N17/2006 野生Wild C21 吉蜜豆3号 Jimidou 3 栽培Cultivated
W28 ZYD00404 野生Wild C22 铁豆40 Tiedou 40 栽培Cultivated
W29 F0011 野生Wild C23 冀黄13 Jihuang 13 栽培Cultivated
SW1 ZYD1834 半野生Semi-wild C24 烟黄3号 Yanhuang 3 栽培Cultivated

表2

58份大豆种质的脂肪和脂肪酸组成含量变异分析"

脂肪性状
Fatty trait (%)
平均值
Mean
最小值
Min
最大值
Max
变异范围
Range
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosist
差异显著性
P-value
棕榈酸 PA 12.39 9.97 15.99 6.02 9.66 0.52 0.54 < 0.0001
硬脂酸 SA 3.94 2.74 7.92 5.18 19.67 2.43 11.19 < 0.0001
油酸 OA 21.51 11.00 39.62 28.62 38.16 0.38 -1.02 < 0.0001
亚油酸 LA 53.88 39.86 60.51 20.65 8.59 -0.91 0.46 < 0.0001
亚麻酸 LNA 8.28 3.45 15.97 12.52 42.82 0.42 -1.07 < 0.0001
饱和脂肪酸 Saturated 16.33 13.09 22.91 9.82 10.23 1.22 3.41 < 0.0001
不饱和脂肪酸 Unsaturated 83.67 77.09 86.91 9.82 2.00 -1.22 3.41 < 0.0001
脂肪 Oil 15.39 6.97 24.71 17.74 34.64 -0.01 -1.38 < 0.0001

图 1

58份材料油脂性状的频率分布 缩写同表2。"

图2

基于形态学分类的野生、半野生和栽培大豆种质的油脂组成的方差分析 图中符号W、SW、C分别代表野生大豆(Glycine soja)、半野生大豆(Glycine gracilis)和栽培大豆(Glycine max)。标以不同字母的柱值在0.05水平上差异显著。缩写同表2。"

图3

58份大豆种质的脂肪含量和脂肪酸组分间的Pearson相关系数 *和**分别表示0.05和0.01水平差异显著; 图中圆圈越大, 表示相关性越强, 圆圈越小, 表示相关性越弱。缩写同表2。"

图 4

58份大豆种质基于油脂组成的聚类分析 聚类结果中红色分支代表野生大豆, 绿色分支代表半野生大豆, 蓝色分支代表栽培大豆。"

图5

58份大豆种质基于油脂组成的主成分分析 PC1~PC3代表基于脂肪和5种脂肪酸组成含量的前3个主成分。红色圆点代表野生大豆, 绿色三角形代表半野生大豆, 蓝色正方形代表栽培大豆。"

表3

基于32对SSR引物的58份大豆种质的遗传多样性参数"

引物
Primer
连锁群
Linkage group
染色体
Chr.
等位基因数目
Allele number
基因多样性
Gene diversity
多态性信息含量
PIC
Satt 236 A1 5 10 0.85 0.83
Satt 300 A1 5 13 0.86 0.85
Satt 390 A2 8 5 0.73 0.69
Satt 409 A2 8 14 0.88 0.86
Satt 197 B1 11 14 0.84 0.83
Satt 556 B2 14 15 0.85 0.83
Satt 281 C2 6 18 0.91 0.90
Satt 286 C2 6 13 0.84 0.82
Satt 307 C2 6 8 0.65 0.62
Satt 184 D1a 1 6 0.63 0.59
Satt 267 D1a 1 10 0.71 0.68
Satt 005 D1b 2 17 0.83 0.82
Satt 157 D1b 2 13 0.85 0.84
Satt 216 D1b 2 16 0.79 0.78
Satt 230 E 15 7 0.62 0.58
Satt 146 F 13 13 0.80 0.78
Satt 334 F 13 8 0.77 0.75
引物
Primer
连锁群
Linkage group
染色体
Chr.
等位基因数目
Allele number
基因多样性
Gene diversity
多态性信息含量
PIC
Satt 586 F 13 11 0.83 0.81
Satt 309 G 18 6 0.73 0.69
Satt 442 H 12 8 0.61 0.53
Satt 239 I 20 12 0.87 0.85
Satt 571 I 20 8 0.79 0.76
Sct 189 I 20 12 0.83 0.81
Satt 431 J 16 15 0.89 0.89
Satt 596 J 16 10 0.86 0.84
Satt 242 K 9 11 0.87 0.86
Satt 588 K 9 11 0.80 0.78
Satt 373 L 19 12 0.80 0.79
Satt 308 M 7 13 0.85 0.84
Satt 346 M 7 9 0.73 0.69
Satt 590 M 7 18 0.91 0.90
Satt 530 N 3 12 0.82 0.80
平均Mean 11.5 0.80 0.78

图6

基于SSR标记的大豆种质的NJ聚类图 图中红色、绿色和蓝色分支分别代表野生、半野生和栽培大豆; CI和CII表示2个主要亚群, G1和G2分别表示聚类结果中的亲缘关系较远且形态差异明显的典型野生大豆(Glycine soja)和栽培大豆(Glycine max)。"

图7

58份大豆材料基于32对SSR遗传标记的主成分分析 PC1a~PC3a代表基于32对SSR引物的前3个主成分因子。红色圆点代表野生大豆, 绿色三角形代表半野生大豆, 蓝色正方形代表栽培大豆。"

图8

基于遗传距离分析结果对野生和栽培大豆种质油脂组成的方差分析 W、C分别代表野生大豆(Glycine soja)和栽培大豆(Glycine max); 标以不同字母的柱值在0.05水平上差异显著。缩写同表2。"

[1] 庄无忌, 韩华琼, 谢发明, 张乔, 李福山, 舒世珍, 常汝镇 . 栽培、野生、半野生大豆脂肪酸组成的初步分析研究. 大豆科学, 1984,3:223-230.
Zhuang W J, Han H W, Xie F M, Zhang Q, Li F S, Shu S Z, Chang R Z . Composition of fatty acid in cultivated, semi-cultivated and wild soybean. Soybean Sci, 1984, 3:223-230 (in Chinese with English abstract).
[2] 吕景良, 邵荣春, 吴百灵, 梁岐, 吴桂荣 . 东北地区大豆品种资源脂肪酸组成的分析研究. 作物学报, 1990,16:349-356.
Lyu J L, Shao R C, Wu B L, Liang Q, Wu G R . Studies on the fatty acid composition of soybean germplasm resources in northeast China. Acta Agron Sin, 1990,16:349-356 (in Chinese with English abstract).
[3] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng, 2002,4:12-21.
doi: 10.1006/mben.2001.0204
[4] 李志香, 沈翠平 . 多不饱和脂肪酸对人体的作用. 生物学通报, 1998,33(1):9-10.
Li Z X, Shen C P . The effect of polyunsaturated fatty acids on the human health. Bull Biol, 1998,33(1):9-10 (in Chinese).
[5] Willett W C, Stampfer M J, Manson J E, Hu F B, Oh K . Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med, 1997,337:1491-1499.
doi: 10.1056/NEJM199711203372102
[6] Mounts T L, Warner K, List G R, Kleiman R, Fehr E G, Hammond E G, Wilcox J R . Effect of altered fatty acid composition on soybean oil stability. J Am Oil Chem Soc, 1988,65:624-628.
doi: 10.1007/BF02540691
[7] Judd J T, Clevidence B A, Muesing R A, Wittes J, Sunkin M E, Podczasy J J . Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr, 1994,59:861-868.
doi: 10.1093/ajcn/59.4.861
[8] Krisetherton P M . Trans-fats and coronary heart disease. Crit Rev Food Sci, 2010,50:29-30.
doi: 10.1080/10408398.2010.526872
[9] 李福山 . 中国野生大豆资源的地理分布及生态分化研究. 中国农业科学, 1993,26(2):47-55.
Li F S . Studies on the ecological and geographical distribution of the Chinese resources of wild soybean (Glycine soya). Sci Agric Sin, 1993,26(2):47-55 (in Chinese with English abstract).
[10] Zhao H K, Zhuang B C, Wang Y M, Li Q J . AFLP analysis of wild (G. soja) and cultivated soybean(G. max) in China. Chin High Technol Lett, 2000,10:32-35.
[11] 吴晓雷, 贺超英, 陈受宜, 庄炳昌, 王克晶, 王学臣 . 用SSR分子标记研究大豆属种间亲缘进化关系. 遗传学报, 2001,28:359-366.
Wu X L, He C Y, Chen S Y, Zhuang B C, Wang K J, Wang X C . Phylogenetic analysis of interspecies in genus. Glycine through SSR markers. J Genet Genomics, 2001,28:359-366 (in Chinese with English abstract).
[12] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X . Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015,4:408-414.
[13] 王彪, 常汝镇, 陶莉, 关荣霞, 闫丽, 张明恢, 冯忠孚, 邱丽娟 . 分析中国栽培大豆遗传多样性所需SSR引物的数目. 分子植物育种, 2003,1:82-88.
Wang B, Chang R Z, Tao L, Guan R X, Yan L, Zhang M H, Feng Z F, Qiu L J . Identification of SSR primer numbers for analyzing genetic diversity of Chinese soybean cultivated soybean. Mol Plant Breed, 2003,1:82-88 (in Chinese with English abstract).
[14] 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚, 王连铮 . 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015,37:548-553.
Fan S X, Li B, Sun J M, Han F X, Yan S R, Wang L, Wang L Z . A quantitative gas chromatographic method for determination of soybean seed fatty acid components. Chin J Oil Crop Sci, 2015,37:548-553 (in Chinese with English abstract).
[15] Ma L, Li B, Han F X, Yan S R, Wang L Z, Sun J M . Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chem, 2015,173:694-701.
doi: 10.1016/j.foodchem.2014.10.096
[16] McQuitty L L . Similarity analysis by reciprocal pairs for discrete and continuous data. Educa Psychol Measure, 1996,26:825-831.
[17] Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987,4:406-425.
[18] 徐豹, 庄炳昌, 路琴华, 王玉民, 胡传璞, 梁歧, 郑惠玉, 吕景良 . 中国野生大豆(G. soja)脂肪及其脂肪酸组成的研究. 吉林农业科学, 1993, ( 2):1-6.
Xu B, Zhuang B C, Lu Q H, Wang Y M, Hu C P, Liang Q, Zheng H Y, Lyu J L . A study of fat content and fatty acid composition of wild soybean (G. soja) in China. Jilin J Agric Sci, 1993, ( 2):1-6 (in Chinese with English abstract).
[19] 王连铮, 吴和礼, 姚振纯, 林红 . 黑龙江省野生大豆的考察和研究. 植物研究, 1983,3(3):116-130.
Wang L Z, Wu H L, Yao Z C, Lin H . Investigation and research of the wild soybean in Heilongjiang province. Bull Bot Res, 1983,3(3):116-130 (in Chinese with English abstract).
[20] 姚利坡 . 野生大豆与栽培大豆遗传关系研究. 河北师范大学硕士学位论文, 河北石家庄, 2009.
Yao L P . Studies on the Genetic Relationship between G. soja and G. max. MS Thesis of Hebei Normal University, Shijiazhuang, Hebei, China, 2009 (in Chinese with English abstract).
[21] 赵洪锟, 王玉民, 李启云, 张明, 庄炳昌 . 中国不同纬度野生大豆和栽培大豆SSR分析. 大豆科学, 2001,20:172-720.
Zhao H K, Wang Y M, Li Q Y, Zhang M, Zhuang B C . SSR analysis of wild soybean (G. soja) and cultivated soybean from different latitude in China. Soybean Sci, 2001,20:172-176 (in Chinese with English abstract).
[22] 王金陵 . 大豆的进化与其分类栽培及育种的关系. 中国农业科学, 1962,3(1):11-15.
Wang J L . The evolution of soybean and its relationship with cultivating and breeding. Sci Agric Sin, 1962,3(1):11-15 (in Chinese).
[23] Han Y P, Zhao X, Liu D Y, Li Y H, Lightfoot D A, Yang Z J, Zhao L, Zhou G, Wang Z K, Huang L, Zhang Z W, Qiu L J, Zheng H K, Li W B . Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol, 2016,209:871-884.
doi: 10.1111/nph.13626
[24] 宋万坤, 于妍, 高运来, 姜威, 刘春燕, 孙殿君, 陈庆山, 胡国华 . 大豆饱和脂肪酸组分改良研究进展. 生物技术通报, 2008, ( 增刊1):18-21.
Song W K, Yu Y, Gao Y L, Jiang W, Liu C Y, Sun D J, Chen Q S, Hu G H . Genetic modification of saturated fatty acid composition of soybean. Biotechnol Bull, 2008, ( suppl-1):18-21 (in Chinese with English abstract).
[25] 吴俏槿, 杜冰, 蔡尤林, 梁钻好, 林志光, 邱国亮, 董立军 . α-亚麻酸的生理功能及开发研究进展. 食品工业科技, 2016,37(10):386-390.
Wu Q J, Du B, Cai Y L, Liang Z H, Lin Z G, Qiu G L, Dong L J . Research development of alpha-linolenic acid. Sci Tech Food Ind, 2016,37(10):386-390 (in Chinese with English abstract).
[1] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
[2] 朱娉慧**,陈冉冉**,于洋,宋雪薇,李慧卿,杜建英,李强,丁晓东,朱延明*. 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析[J]. 作物学报, 2017, 43(09): 1319-1327.
[3] 陈晨, 孙晓丽, 刘艾林, 端木慧子, 于洋, 肖佳雷, 朱延明. 野生大豆碳酸盐胁迫应答基因GsMIPS2的克隆及功能分析[J]. 作物学报, 2015, 41(09): 1343-1352.
[4] 王吴彬,何庆元,杨红燕,向仕华,邢光南,赵团结,盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析[J]. 作物学报, 2013, 39(07): 1155-1163.
[5] 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788.
[6] 简爽,文自翔,李海朝,袁道华,李金英,张辉,叶永忠,卢为国. 运用关联分析定位栽培大豆蛋白11S、7S组分的相关基因位点[J]. 作物学报, 2012, 38(05): 820-828.
[7] 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽. 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析[J]. 作物学报, 2011, 37(08): 1351-1359.
[8] 肖鑫辉, 李向华, 刘洋, 张应, 王克晶. 高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异[J]. 作物学报, 2011, 37(07): 1289-1300.
[9] 王希,李勇,朱延明,柏锡,才华,纪巍. 野生大豆胁迫应答膜联蛋白基因的克隆及胁迫耐性分析[J]. 作物学报, 2010, 36(10): 1666-1673.
[10] 樊金萍;柏锡;李勇;纪巍;王希;才华;朱延明. 野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析[J]. 作物学报, 2008, 34(09): 1581-1587.
[11] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析 II. 优异等位变异的发掘[J]. 作物学报, 2008, 34(08): 1339-1349.
[12] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析 I. 群体结构及关联标记[J]. 作物学报, 2008, 34(07): 1169-1178.
[13] 易秋香;黄敬峰;王秀珍;钱翌. 玉米粗脂肪含量高光谱估算模型初探[J]. 作物学报, 2007, 33(01): 171-174.
[14] 宁海龙;李文霞;李文滨. 大豆脂肪酸组分的胚、细胞质和母体遗传效应分析[J]. 作物学报, 2006, 32(12): 1873-1877.
[15] 郑永战;盖钧镒;卢为国;李卫东;周瑞宝;田少君. 大豆脂肪及脂肪酸组分含量的QTL定位[J]. 作物学报, 2006, 32(12): 1823-1830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!