欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1050-1058.doi: 10.3724/SP.J.1006.2019.82054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻白条纹叶突变体wsl1的遗传分析及基因精细定位

莫祎1,2,孙志忠2,丁佳2,余东2,孙学武2,盛夏冰2,谭炎宁2,袁贵龙2,袁定阳1,2,3,*(),段美娟1,*()   

  1. 1 湖南农业大学, 湖南长沙410128
    2 湖南杂交水稻研究中心杂交水稻国家重点实验室, 湖南长沙410125
    3 国家南方粮油作物协同创新中心, 湖南长沙410128
  • 收稿日期:2018-11-08 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-01
  • 通讯作者: 袁定阳,段美娟
  • 作者简介:莫祎, E-mail: 759447001@qq.com|孙志忠, E-mail: szznihaoa@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(3167166);水稻种子良种繁育关键技术研究与示范(2018YFD0100802);香港中文大学合作项目培育超高产杂交水稻组合(TK1711793)(CUHK Joint Project to Develop Super-High Yield Hybrid Rice TK1711793);湖南省农业科学院科技创新项目(2017ZD02);湖南省自然科学青年基金项目(2017JJ3166)

Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice

MO Yi1,2,SUN Zhi-Zhong2,DING Jia2,YU Dong2,SUN Xue-Wu2,SHENG Xia-Bing2,TAN Yan-Ning2,YUAN Gui-Long2,YUAN Ding-Yang1,2,3,*(),DUAN Mei-Juan1,*()   

  1. 1 Hunan Agricultural University, Changsha 410128, Hunan, China
    2 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    3 National South Grain and Oil Crops Collaborative Innovation Center, Changsha 410128, Hunan, China
  • Received:2018-11-08 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-01
  • Contact: Ding-Yang YUAN,Mei-Juan DUAN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(3167166);the Research and Demonstration of Key Technology of Improved Seed Breeding of Rice Seeds(2018YFD0100802);the Chinese University of Hong Kong(CUHK Joint Project to Develop Super-High Yield Hybrid Rice TK1711793);the Scientific and Technological Innovation Project of Hunan Academy of Agricultural Sciences(2017ZD02);the Project of Hunan Natural Science Youth Foundation(2017JJ3166)

摘要:

从粳稻日本晴和籼稻R1128杂交衍生的重组自交系群体中获得一个稳定遗传的白条纹叶突变体wsl1 (white stripe leaf 1), 世代为F10。与亲本R1128相比, 突变体wsl1表现出白条纹叶, 同时叶脉呈现白化, 该性状在苗期就出现并持续整个生育期; 突变体的株高、每穗总粒数、剑叶长、生育期显著增加, 而结实率显著下降, 其他农艺性状没有显著变化。分蘖期突变体wsl1的叶绿素a、叶绿素b和胡萝卜素含量较杂交亲本R1128显著下降; 透射电镜观察表明, 与野生型相比, 突变体的叶绿体形状异常, 不规则。遗传分析表明, 该突变性状由1对隐性核基因控制。精细定位后发现, 目标基因WSL1位于第1染色体短臂上标记M1-54与标记M1-70之间, 两者相距89.7 kb。生物信息学分析表明候选区间内共有8个开放阅读框, 暂未发现已报道的叶色相关基因; 其中LOC_Os01g02080编码肽基脯氨酰顺反异构酶, GO (Gene Ontology)分类显示其可能与类囊体形成有关, 后续将通过比较测序、qRT-PCR等分子实验来确定候选基因。

关键词: 水稻, 白条纹叶突变体, 遗传分析, 基因定位

Abstract:

A white stripe leaf mutant wsl1 was obtained from the recombinant inbred lines derived from the cross of Oryza sativa var. japonica Nipponbare and Oryza sativa L. subsp. indica R1128. The mutant wsl1 showed white striped leaves and albino veins firstly at the seedling stage and then through the whole growth period. Agronomic traits such as plant height, number of spikelets per panicle, flag leaf length and heading date were significantly increased, while the seed setting rate decreased significantly in the mutant. Compared with wild type R1128, the chlorophyll a, chlorophyll b, and carotene contents of mutant leaves obviously decreased. Microscope observation indicated there were significantly decreased normal chloroplast and a large number of abnormal chloroplasts in mutant. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive nuclear gene. WSL1 was mapped on the short arm of chromosome 1, between markers M1-54 and M1-70, with physical distance of about 89.7 kb. There were eight new open reading frames in the candidate region. Among them LOC_Os01g02080 encodes a peptide-based prolyl cis-trans isomerase, GO (Gene Ontology) classification showed that it might be related to thylakoid formation.

Key words: rice, white stripe leaf mutant, genetic analysis, gene mapping

图1

野生型R1128和突变体wsl1在苗期、分蘖期和抽穗期的表型 A: 五叶期幼苗, 左为野生型, 右为wsl1; B: 长沙突变体分蘖期; C: 三亚突变体分蘖期; D: 长沙突变体孕穗期。"

表1

野生型R1128和突变体wsl1农艺性状"

农艺性状Agronomic trait R1128 wsl1
有效穗数 No. of effective panicles 6.25±2.3 5.9±1.9
穗长 Panicle length (cm) 29.8±1.0 32.9±2.8
千粒重 1000-grain weight (g) 23.3±1.5 22.6±1.1
一次枝梗数 No. of primary branch 19.8±2.4 21.1±1.9
二次枝梗数 No. of secondary branch 49.5±6.8 68.7±8.7**
剑叶宽 Flag leaf width (cm) 3.0±0.4 3.0±0.4
株高 Plant height (cm) 121.9±5.8 181.6±6.9**
每穗总粒数 No. of spikelets per panicle 342.0±61.5 447.1±85.9**
结实率 Seed setting rate (%) 76.3±0.9 57.8±0.9**
剑叶长 Flag leaf length (cm) 40.8±7.7 55.1±9.6**
抽穗期 Heading date (d) 87.0±2.5 102±2.1**

图2

野生型R1128和突变体wsl1苗期和分蘖期叶绿素的含量比较 A: 苗期光合色素含量比较; B: 分蘖期光合色素含量比较。Chl a: 叶绿素a; Chl b: 叶绿素b; Total Chl: 叶绿素a+叶绿素b; Car: 类胡萝卜素。*表示野生型与突变体在0.05水平差异显著; **表示野生型与突变体在0.01水平差异显著。"

图3

突变体wsl1和野生型R1128叶肉细胞中叶绿体显微结构 A: 野生型叶肉细胞; B: wsl1 白条纹叶绿区叶肉细胞; C: wsl1白条纹叶绿转白区叶肉细胞; D: wsl1白条纹叶白区叶肉细胞。c: 叶绿体; v: 液泡。"

图4

野生型和突变体wsl1分蘖期的叶片横切面图 A: 野生型叶片横切面; B: wsl1白条纹叶片横切面。M: 运动细胞。"

表2

突变体wsl1的遗传分析"

杂交组合
Cross
正常植株数
Number of green plant
白化叶植株数
Number of albino
plant
F2群体总株数
Total number of F2
plants
分离比
Theoretical segregation ratio
χ2
(χ20.05=3.84)
wsl1/Nipponbare 1247 390 1637 3.20 1.301
R1128/wsl1 2702 878 3580 308 0.431

图5

WSL1的精细定位 n: 群体大小; recombinant: 重组单株数。"

表3

WSL1 基因的连锁标记"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM10022 CCTCCATAGAGTAAGGTTTGCATGG CCTCCTCCTCTGTCTTTCTCTGC
M1-40 GACGACGCCCGGTGGCTGTG GCAGTATCACCATGGATCCA
M1-54 ACATAAGTATCATGGGCTTA CCGAAGTTGCGTACTAACCG
M1-70 GTTGCCGCGAAGTTTCACGC ACCACCACCCAAAATGAGCT
M1-76 ACCTGGAGGAGCAAATTAGG CGTCCATTCCAATGATTTCC
M1-80 AAGTTATCTTTGTGACTGCT AGAAATGCGGCAGGAACGAC
RI02428 CTTCGTCACCGCAGATGG CTGTTTCTTTGGACCGGTGT

表4

WSL1 定位区域内基因信息"

基因位点
Gene locus
基因表达产物
Gene product
LOC_Os01g02000 phosphate transporter 1, putative, expressed
LOC_Os01g02010 expressed protein
LOC_Os01g02020 acetyl-CoA acetyltransferase, cytosolic, putative, expressed
LOC_Os01g02040 retrotransposon protein, putative, unclassified, expressed
LOC_Os01g02050 phosphoenolpyruvate carboxylase, putative, expressed
LOC_Os01g02060 TOO MANY MOUTHS precursor, putative, expressed
LOC_Os01g02070 invertase/pectin methylesterase inhibitor family protein, putative, expressed
LOC_Os01g02080 peptidyl-prolyl cis-trans isomerase, putative, expressed
[1] Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M . Defect innon-yellow coloring 3, an a/b hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009,59:940-952.
doi: 10.1111/tpj.2009.59.issue-6
[2] Du P, Ling Y H, Sang X C, Zhao F M, Xie R, Yang Z L, He G H . Gene mapping related to yellow green leaf in a mutant line in rice (Oryza sativa). Genes Genom, 2009,31:165-171.
[3] 张洪征, 程治军, 万建民 . 水稻白化突变体研究进展. 生物技术通报, 2013, ( 11):1-7.
Zhang H Z, Cheng Z J, Wan J M . Progresses on the studying of rice leaf albino. Biotechnol Bull, 2013, ( 11):1-7 (in Chinese with English abstract).
[4] Nagamatsu T, Omura T . Linkage study of the genes belonging to the first chromosome in rice. Jpn J Breed, 1962,12:231-236.
doi: 10.1270/jsbbs1951.12.231
[5] Birky C W Jr, Perlman P S, Byers T J . Genetics biogenesis mitochondria chloroplasts. Q Rev Biol, 1976,51:527-528.
[6] Aluru M R, Rodermel S R . Control of chloroplast redox by the immutants terminal oxidase. Physiol Plant, 2004,120:4-11.
doi: 10.1111/ppl.2004.120.issue-1
[7] 孙立亭, 林添资, 王云龙, 牛梅, 胡婷婷, 刘世家, 王益华, 万建民 . 水稻白条纹突变体st13 的表型分析及基因定位. 中国水稻科学, 2017,31:355-363.
Sun L T, Lin T Z, Wang Y L, Niu M, Hu T T, Liu S J, Wang Y H, Wan J M . Phenotypic analysis and gene mapping of a white stripe mutant st13 in rice. Chin J Rice Sci, 2017,31:355-363 (in Chinese with English abstract).
[8] Li H C, Qian Q, Wang B, Li X B, Zhu L H, Xu J C . Identification and chromosomal localization of rice white panicle. Chin Sci Bull, 2003,48:268-270.
[9] 许凤华, 程治军, 王久林, 吴自明, 孙伟, 张欣, 雷财林, 王洁, 吴赴清, 郭秀平, 刘玲珑, 万建民 . 水稻白条纹叶Gws基因的精细定位与遗传分析. 作物学报, 2010,36:71-720.
Xu F H, Cheng Z J, Wang J L, Wu Z M, Sun W, Zhang X, Lei C L, Wang J, Wu F Q, Guo X P, Liu L L, Wan J M . Genetic analysis and fine-mapping of Gws gene using green-white-stripe rice mutant. Acta Agron Sin, 2010,36:713-720 (in Chinese with English abstract).
[10] Fang J, Chai C, Qian Q . Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008,54:177-189.
doi: 10.1111/j.1365-313X.2008.03411.x
[11] Li N, Chu H W, Wen T Q, Zhang D B . Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai, 2007,23(1):1-4.
[12] Ge C W, Wang L, Ye W J, Wu L W, Cui Y T, Chen P, Pan J J, Zhang D, Hu J, Zeng D L, Dong G J, Qian Q, Guo L B, Xue D W . Single-point mutation of an histidine-aspartic domain-containing gene involving in chloroplast ribosome biogenesis leads to white fine stripe leaf in rice. Sci Rep, 2017,7:3298.
doi: 10.1038/s41598-017-03327-2
[13] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H . Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005,57:805-818.
doi: 10.1007/s11103-005-2066-9
[14] Zhang T, Feng P, Li Y F, Yu P, Yu G L, Sang X C, Ling Y H, Zeng X Q, Li Y D, Huang J Y, Zhang T Q, Zhao F M, Wang N, Zhang C W, Yang Z L, Wu R H, He G H . Virescent-albino leaf 1 regulates leaf colour development and cell division in rice. J Exp Bot, 2018, doi: 10.1093/jxb/ery250.
[15] Rogers S O, Bendich A J . Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985,5:69-76.
doi: 10.1007/BF00020088
[16] 初志战, 刘小林, 陈远玲, 刘耀光 . 一个水稻白化致死突变基因的精细定位和遗传研究. 中国水稻科学, 2016,30:136-142.
Chu Z Z, Liu X L, Chen Y L, Liu Y G . Genetic analysis and gene mapping of an albino lethal mutant in rice. Chin J Rice Sci, 2016,30:136-142 (in Chinese with English abstract).
[17] Gothandam K M, Kim E S, Cho H, Chung Y Y . OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005,58:421-433.
doi: 10.1007/s11103-005-5702-5
[18] Su N, Hu M L, Wu D X . Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012,159:227-238.
doi: 10.1104/pp.112.195081
[19] 马娇, 任德勇, 吴国超, 朱小燕, 马玲, 桑贤春, 凌英华, 何光华 . 水稻叶缘白化突变体mal的遗传分析与基因定位. 作物学报, 2014,40:591-599.
Ma J, Ren D Y, Wu G C, Zhu X Y, Ma L, Sang X C, Ling Y H, He G H . Genetic analysis and gene mapping of a marginal albino leaf mutant mal in rice. Acta Agron Sin, 2014,40:591-599 (in Chinese with English abstract).
[20] Siddappa K, Vasudev K L, Ganiger B S, Rathod R, Devar K V . Report of albino seedlings in Pongamia pinnata. Karnataka J Agric Sci, 2004,17:884-885.
[21] 谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平 . 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位. 作物学报, 2015,41:831-837.
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P . Identification and fine mapping of green-revertible chlorina gene grc2 in rice(Oryza sativa L.). Acta Agron Sin, 2015,41:831-837 (in Chinese with English abstract).
[22] 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华 . 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013,39:1409-1415.
Zhu X Y, Xu F F, Sang X C, Jiang Y D, Dai G M, Wang N, Zhang C W, He G H . Genetic analysis and gene mapping of a rice white midrib mutant wpsm. Acta Agron Sin, 2013,39:1409-1415 (in Chinese with English abstract).
[23] 周坤能, 夏加发, 马廷臣, 王元垒, 李泽福 . 水稻条纹叶和白穗基因SLWP的定位及变异分析. 中国水稻科学, 2018,32:325-334.
Zhou K N, Xia J F, Ma T C, Wang Y L, Li Z F . Mapping and mutation analysis of stripe leaf and white panicle of gene SLWP in rice. Chin J Rice Sci, 2018,32:325-334 (in Chinese with English abstract).
[24] 王兴春, 王敏, 季芝娟, 陈钊, 刘文真, 韩渊怀, 杨长登 . 水稻糖苷水解酶基因OsBE1在叶绿体发育中的功能. 作物学报, 2014,40:2090-2097.
Wang X C, Wang M, Ji Z J, Chen Z, Liu W Z, Han Y H, Yang C D . Functional characterization of the clycoside hydrolase encoding gene OsBE1 during chloroplast development in Oryza sativa. Acta Agron Sin, 2014,40:2090-2097 (in Chinese with English abstract).
[25] Gothandam K M, Kim E S, Cho H, Chung Y Y . OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005,58:421-433.
doi: 10.1007/s11103-005-5702-5
[26] Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y . Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol(Stuttg), 2015,17:599-607.
[27] Zhang Z, Tan J, Shi Z, Xie Q, Xing Y, Liu C, Chen Q, Zhu H, Wang J, Zhang J, Zhang G . Albino leaf1 that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development. Plant Physiol, 2016,171:1182-1191.
[28] Wang Y, Wang C, Zheng M, Liu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H Y, William T, Wang Y, Wan J . White Panicle1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiol, 2016,170:2110-2123.
doi: 10.1104/pp.15.01949
[29] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K . The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007,52:512-527.
[30] Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C . Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009,150:388-401.
doi: 10.1104/pp.109.136648
[31] Wang Y, Zhang J, Shi X, Peng Y, Li P, Lin D, Dong Y, Teng S . Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot, 2016,67:5187-5202.
[32] Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J . WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol, 2016,92:581-595.
doi: 10.1007/s11103-016-0533-0
[33] Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M . Disruption of a rice pentatricopeptide repeat protein causes a seedling specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012,159:227-238.
doi: 10.1104/pp.112.195081
[34] 成钦淑, 叶邦全, 袁灿, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟 . 水稻白条纹叶突变体st11的遗传分析与基因定位. 中国水稻科学, 2015,29:14-21.
Cheng Q S, Ye B Q, Yuan C, Li W T, Yin J J, Wang J, He M, Wang J C, Wang Y P, Li S G, Chen X W . Genetic analysis and gene mapping of white stripe leaf mutant stl1 in rice. Chin J Rice Sci, 2015,29:14-21 (in Chinese with English abstract).
[35] Cao P H, Ren Y, Kun L X, Zhang T Y, Zhang P, Xiao L J, Zhang F L, Liu S J, Jiang L, Wan J M . Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice(Oryza sativa L.). Plant Cell Rep, 2019,38:183-194.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!