欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1059-1069.doi: 10.3724/SP.J.1006.2019.84162

• 耕作栽培·生理生化 • 上一篇    下一篇

应用缩节安(DPC)调控棉花株型的定位定量效应研究

赵文超1,2,杜明伟1,黎芳1,田晓莉1,*(),李召虎1   

  1. 1 中国农业大学农学院 / 植物生长调节剂教育部工程研究中心, 北京100193
    2 德州市农业科学研究院, 山东德州 253000
  • 收稿日期:2018-11-29 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-11
  • 通讯作者: 田晓莉
  • 作者简介:赵文超, E-mail: wenchao_jiayou@163.com
  • 基金资助:
    本研究由引进国际先进农业科学技术计划(948计划)项目(2016-X25)(948 Program 2016-X25);国家现代农业技术体系建设专项(CARS-15-16)

Location- and quantity-based effects of mepiquat chloride application on cotton plant-type

ZHAO Wen-Chao1,2,DU Ming-Wei1,LI Fang1,TIAN Xiao-Li1,*(),LI Zhao-Hu1   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University / Engineering Research Center of Plant Growth Regulator, Ministry of Education, Beijing 100193, China
    2 Dezhou Academy of Agricultural Sciences, Dezhou 253000, Shandong, China
  • Received:2018-11-29 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-11
  • Contact: Xiao-Li TIAN
  • Supported by:
    This study was supported by the Program of Introducing International Super Agricultural Science and Technology(948 Program 2016-X25);the China Agricultural Research System(CARS-15-16)

摘要:

缩节安(1,1-dimethyl piperidinium chloride, DPC)是棉花生产中广泛应用的植物生长延缓剂, 其调控棉花茎枝生长的定位定量效应尚缺乏系统的量化研究。本研究2013—2014年在田间条件下分别于棉花现蕾期、盛蕾期后、盛花期前、盛花期后和打顶后单次应用不同剂量的DPC, 测量了DPC作用有效期内的棉花株高和主茎生长速率, 探究了所有主茎节间及所有果节对DPC的响应。结果表明, DPC处理对棉花主茎节间的影响范围为N节(应用DPC时的主茎节)以下1~4个和N节以上0~6个(打顶条件下), 对果枝的影响范围为N节以下1~11个和N节以上0~5个, 其中N节以下果枝受影响的果节多于N节以上果枝。将盛蕾期后和盛花期前2次应用DPC的效应叠加, 其影响范围几乎可以覆盖全部主茎节间(果枝始节以上)和全部果节。DPC应用剂量与其作用强度并不总存在较好的线性关系。DPC的定位定量效应除了与应用时间和剂量有关, 还受到温度、降水等环境条件和棉株生物量、源库关系的影响。

关键词: 棉花, 缩节安, 应用时间, 应用剂量, 主茎, 果枝

Abstract:

The plant growth regulator mepiquat chloride (MC; 1,1-dimethyl piperidinium chloride) has been successfully and worldwide used in cotton production. It has been known that MC application time decides its effect location and MC application rate decides its effect strength. However, there were less detailed information on the location- and quantity-based effects of MC on cotton stem and branches. In the present field study, MC was respectively applied at early squaring stage, after peak squaring stage, before peak blooming stage, after peak blooming stage and post-topping stage with a range of rates. We monitored plant height at three days interval during MC valid period, and measured all internodes of stem and fruiting branches prior to harvest. Under the condition of topping in late July, the overall effectiveness scope of MC (across different application times) on main stem ranged from the fourth internode below the uppermost node (named as N) to the sixth internode above N node. In terms of the effectiveness scope of MC on fruiting branches, it covered the 11 fruiting branches below N node and five branches above N node. In addition, the influenced internodes in most fruiting branches below N node were more than those above N node. When we overlaid the effectiveness scopes of MC application after peak squaring and before peak blooming, the effect was covered almost all internodes of both main stem (above the node of the first fruiting branch) and fruiting branches. Moreover, we found that there was not always a good linear relationship between MC rate and its effective strength. Besides application time and rate, the location- and quantity-based effects of MC may depend on temperature, rainfall, plant biomass and source-sink relationship.

Key words: cotton, 1, 1-dimethyl piperidinium chloride, application time, application rate, main stem, fruiting branches

表1

河间市棉花生育期气象资料"

月份
Month
平均温度 Average temperature (°C) 降水量 Rainfall (mm) 日照时数 Sunshine duration (h)
2013 2014 30-yeara 2013 2014 30-yeara 2013 2014 30-yeara
4 12.2 16.6 14.4 8.5 30.8 26.1 270.7 247.4 256.5
5 20.9 22.9 21.4 26.5 38.0 35.3 258.2 316.8 282.1
6 24.6 25.6 25.7 80.1 30.0 66.7 187.3 297.9 244.8
7 26.2 28.2 27.2 279.1 42.4 161.7 187.0 297.6 222.6
8 26.5 26.0 24.8 96.7 93.0 170.9 238.8 302.0 199.1
9 20.2 20.8 19.4 39.2 19.6 64.2 184.3 226.2 209.1
10 12.8 14.6 13.6 5.0 6.8 12.2 169.3 180.1 197.9
平均 Average 20.5 22.1 20.9
总计Total 535.1 260.6 537.0 1495.6 1868.0 1612.3

表2

各试验应用DPC的时间和剂量"

试验编号
Experiment number
DPC应用时间 MC application time CK DPC剂量 MC rate (g hm-2)
生育时期
Growth stage
日期 Date (month/day) 主茎节数 Stem nodes M1 M2 M3 M4
2013 2014 2013 2014
1 现蕾期 Squaring 6/2 6/3 7 7 0 3.8 7.5 11.3 15.0
2 盛蕾期后 After peak squaring 6/14 6/14 12 12 0 7.5 15.0 22.5 30.0
3 盛花期前 Before peak blooming 7/3 7/6 18 17 0 22.5 45.0 67.5 90.0
4 盛花期后 After peak blooming 7/13 7/16 20 18 0 30.0 60.0 90.0 120.0
5 打顶后 Post-topping 7/31 8/2 0 45.0 90.0 135.0 180.0

图1

2013年和2014年现蕾期(A)、盛蕾期后(B)、盛花期前(C)和盛花期后(D)应用DPC对主茎日增量的影响 CK为对照; M1~M4代表4个DPC剂量; 处理同表2。**表示处理间0.01水平上差异显著, *表示处理间0.05水平上差异显著。#代表月/日, 指DPC的应用时间。"

图2

2013年和2014年现蕾期(A)、盛蕾期后(B)、盛花期前(C)和盛花期后(D)应用DPC对株高变化动态的影响 CK为对照; M1~M4代表4个DPC剂量; 处理同表2。**表示处理间0.01水平上差异显著, *表示处理间0.05水平上差异显著。#代表月/日, 指DPC的应用时间; 箭头代表生长速度拐点。"

图3

2013年和2014年现蕾期(A)、盛蕾期后(B)、盛花期前(C)和盛花期后(D)应用DPC对主茎节间长度的影响 CK为对照, M1~M4代表4个DPC剂量, 处理同表2; **表示处理间0.01水平上差异显著, *表示处理间0.05水平上差异显著。"

表3

2013年和2014年盛蕾期后、盛花期前和盛花期后应用DPC对果枝长度(1)的影响"

年份Year 生育时期
Growing stage
DPC剂量(2)
MC rate(2)
果枝序号 Number of fruit branches
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2013 盛蕾期后
After peak squaring
CK (cm) / 29.9 32.6 / / / / / / / / / / / /
M1 (%) / -4.1% -5.9% / / / / / / / / / / / /
M2 (%) / -9.6% -18.2% / / / / / / / / / / / /
M3 (%) / -13.8% -11.4% / / / / / / / / / / / /
M4 (%) / -9.4% -16.6% / / / / / / / / / / / /
盛花期前
Before peak blooming
CK (cm) / / / 31.4 31.6 31.5 31.4 32.3 31.0 32.5 30.5 28.9 27.0 25.2 24.2
M1 (%) / / / -3.3% -5.3% -10.6% -13.7% -18.6% -12.9% -16.1% -15.3% -16.5% -15.9% -16.4% -20.0%
M2 (%) / / / -11.5% -10.9% -13.1% -20.1% -23.7% -18.1% -21.5% -21.3% -18.2% -19.8% -18.9% -23.7%
M3 (%) / / / -9.2% -11.1% -16.0% -19.4% -26.2% -21.0% -25.1% -21.0% -24.6% -25.3% -24.8% -29.7%
M4 (%) / / / -9.6% -11.8% -16.4% -20.0% -25.1% -25.8% -29.0% -27.8% -26.0% -26.5% -24.7% -28.3%
盛花期后
After peak blooming
CK (cm) / / / / / / / / 31.4 30.9 28.7 27.8 25.9 24.4 24.1
M1 (%) / / / / / / / / -11.1% -14.5% -16.7% -20.3% -19.4% -14.3% -20.0%
M2 (%) / / / / / / / / -10.8% -16.2% -16.3% -21.5% -23.2% -23.6% -23.3%
M3 (%) / / / / / / / / -14.8% -24.0% -26.3% -31.1% -31.2% -30.1% -28.3%
M4 (%) / / / / / / / / -18.2% -26.0% -26.8% -33.2% -34.6% -34.0% -38.1%
2014 盛蕾期后
After peak squaring
CK (cm) 25.0 26.6 26.1 25.8 24.5 23.4 23.2 / / / / / / / /
M1 (%) -6.4% -17.1% -16.1% -18.0% -15.7% -13.7% -18.8% / / / / / / / /
M2 (%) -13.1% -18.8% -18.1% -19.2% -17.8% -16.1% -18.0% / / / / / / / /
M3 (%) -25.4% -28.4% -28.2% -27.6% -28.2% -21.7% -25.8% / / / / / / / /
M4 (%) -24.5% -24.7% -30.1% -30.6% -29.2% -25.8% -25.9% / / / / / / / /
盛花期前
Before peak blooming
CK (cm) / / / / 22.5 20.9 20.2 18.8 16.9 15.9 14.7 / / / /
M1 (%) / / / / -7.7% -13.6% -19.9% -26.0% -23.8% -19.0% -18.0% / / / /
M2 (%) / / / / -16.8% -24.7% -36.0% -40.7% -38.4% -29.2% -34.4% / / / /
M3 (%) / / / / -18.7% -24.6% -31.8% -38.1% -36.6% -36.9% -36.3% / / / /
M4 (%) / / / / -17.4% -25.9% -33.4% -39.2% -41.5% -43.2% -29.4% / / / /
盛花期后
After peak blooming
CK (cm) / / / / / / 23.4 21.9 22.2 20.8 19.7 / / / /
M1 (%) / / / / / / -18.6% -18.8% -28.3% -32.2% -32.0% / / / /
M2 (%) / / / / / / -16.4% -16.1% -26.8% -30.3% -31.3% / / / /
M3 (%) / / / / / / -23.6% -26.0% -36.2% -36.2% -38.6% / / / /
M4 (%) / / / / / / -17.7% -24.7% -34.6% -40.2% -37.6% / / / /

图4

2013年现蕾期(A)、盛蕾期后(B)、盛花期前(C)、盛花期后(D)和打顶期(E)应用DPC的株型模式图 1-CK~5-CK分别为不同生育时期的对照, 1-MC~5-MC分别为不同生育时期4个DPC应用剂量的平均值, 处理同表2; 绿色部分代表DPC作用部位; N为应用DPC时的主茎节位; Bar=10 cm。"

图5

2014年现蕾期(A)、盛蕾期后(B)、盛花期前(C)、盛花期后(D)和打顶期(E)应用DPC的株型模式图 1-CK~5-CK分别为不同生育时期的对照, 1-MC~5-MC分别为不同生育时期4个DPC应用剂量的平均值, 处理同表2; 绿色部分代表DPC作用部位; N为应用DPC时的主茎节位; Bar = 10 cm。"

[1] 李丕明, 奚惠达, 何钟佩, 韩碧文 . 农作物化控栽培工程技术的发展与中国农业现代化前景. 北京农业大学学报, 1991,17(增刊):1-5.
Li P M, Xi H D, He Z P, Han B W . The engineering development of chemically-manipulated crop culture in relation to the prospect of agricultural modernization in china. Acta Agric Univ Pekinensis, 1991,17(suppl.):1-5 (in Chinese with English abstract).
[2] Rademacher W . Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000,51:501-531.
doi: 10.1146/annurev.arplant.51.1.501
[3] York A C . Cotton cultivar response to mepiquat chloride. Agron J, 1983,75:663-667.
doi: 10.2134/agronj1983.00021962007500040020x
[4] York A C . Response of cotton to mepiquat chloride with varying N rates and plant populations. Agron J, 1983,75:667-672.
doi: 10.2134/agronj1983.00021962007500040021x
[5] 何钟佩, 奚惠达, 杨秉芳, 李丕明, 韩碧文 . DPC效应的定向、定量诱导及其在棉花丰产栽培中的应用. 北京农业大学学报, 1984,10(1):19-28.
He Z P, Xi H D, Yang B F, Li P M, Han B W . The key to get good yield of cotton by inducing the response to DPC towards a planned direction and in planned strength. Acta Agric Univ Pekinensis, 1984,10(1):19-28 (in Chinese with English abstract).
[6] 何钟佩, 李丕明, 奚惠达, 李召虎, 白玉良 . DPC化控技术在棉花上的应用和发展~从防止徒长到系统的定向诱导. 北京农业大学学报, 1991,17(增刊):58-63.
He Z P, Li P M, Xi H D, Li Z H, Bai Y L . The using and development of DPC chemical controlling technique in cotton culture. Acta Agric Univ Pekinensis, 1991,17(suppl.):58-63 (in Chinese with English abstract).
[7] Zhao D, Oosterhuis D M . Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J Plant Growth Regul, 2000,19:415-422.
doi: 10.1007/s003440000018
[8] Pettigrew W T, Johnson J T . Effects of different seeding rates and plant growth regulators on early planted cotton. J Cotton Sci, 2005,9:189-198.
[9] Kerby T A . Cotton response to mepiquat chloride. Agron J, 1985,77:515-518.
doi: 10.2134/agronj1985.00021962007700040003x
[10] Reddy V R, Baker D N, Hodges H F . Temperature and mepiquat chloride effects on cotton canopy architecture. Agron J, 1990,82:190-195.
doi: 10.2134/agronj1990.00021962008200020004x
[11] Gwathmey C O, Craig Jr C C . Managing earliness in cotton with mepiquat type growth regulators. Crop Manag, 2003,12:1-8.
[12] Siebert J D, Stewart A M . Influence of plant density on cotton response to mepiquat chloride application. Agron J, 2006,98:1634-1639.
doi: 10.2134/agronj2006.0083
[13] 何钟佩, 陈洪战, 李丕明, 李召虎 . DPC调控棉花氮素追肥时期的复合效应研究. 北京农业大学学报, 1991,17(增刊):31-37.
He Z P, Chen H Z, Li P M, Li Z H . Studies on the complex response of applying nitrogen at different stage under DPC control. Acta Agric Univ Pekinensis, 1991,17(suppl.):31-37 (in Chinese with English abstract).
[14] 李丕明, 何钟佩, 李召虎 . 棉花应用缩节安(DPC)化控技术研究概况与进展. 作物杂志, 1991, ( 2):1-3.
Li P M, He Z P, Li Z H . Outline and progression about the study of DPC chemical control on cotton. Crops, 1991, ( 2):1-3 (in Chinese).
[15] Ren X M, Zhang L Z, Du M W, Evers J B, van der Werf W, Tian X L, Li Z H . Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res, 2013,149:1-10.
doi: 10.1016/j.fcr.2013.04.014
[16] Yang F Q, Du M W, Tian X L, Eneji A E, Duan L S, Li Z H . Plant growth regulation enhanced potassium uptake and use efficiency in cotton. Field Crops Res, 2014,163:109-118.
doi: 10.1016/j.fcr.2014.03.016
[17] Wilson Jr D G, York A C, Edmisten K L . Narrow-row cotton response to mepiquat chloride. J Cotton Sci, 2007,11:177-185.
[18] Biles S P, Cothren J T . Flowering and yield response of cotton to application of mepiquat chloride and PGR-IV. Crop Sci, 2001,41:1834-1837.
doi: 10.2135/cropsci2001.1834
[19] McConnell J S, Baker W H, Frizzell B S, Varvil J J . Response of cotton to nitrogen fertilization and early multiple applications of mepiquat chloride. J Plant Nutr, 1992,15:457-468.
doi: 10.1080/01904169209364333
[20] Reddy V R, Trent A, Acock B . Mepiquat chloride and irrigation versus cotton growth and development. Agron J, 1992,84:930-933.
doi: 10.2134/agronj1992.00021962008400060004x
[21] Nichols S P, Snipes C E, Jones M A . Evaluation of row spacing and mepiquat chloride in cotton. J Cotton Sci, 2003,7:148-155.
[22] Alkuddsi Y, Patil S S, Manjula S M, Patil B C, Nadaf H L, Nandihali B S . Association analysis of seed cotton yield components and physiological parameters in derived F1 inter specific crosses of cotton. Bioscience Methods, 2013,4(5):23-33.
[23] Baloch M J, Khan N U, Rajput M A, Jatoi W A, Gul S, Rind I H, Veesar N F . Yield related morphological measures of short duration cotton genotypes. J Anim Plant Sci, 2014,24:1198-1211.
[24] 任晓明 . 黄淮海棉区适宜机械采收棉田的种植密度和化学调控技术研究. 中国农业大学博士学位论文,北京, 2013.
Ren X M . Managing Plant Density and Chemical Chontrol for Mechanical Harvesting in the Yellow River Valley. PhD Dissertation of China Agricultural University, Beijing, China, 2013 (in Chinese with English abstract) .
[25] 中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013. pp 125-185.
Cotton Research Institute Chinese Academy of Agricultural Sciences. Cultivation of Cotton in China. Shanghai: Shanghai Scientific and Technical Publishers, 2013. pp 125-185(in Chinese).
[26] Kerby T A, Bourland F M, Hake K D. Physiological rationales in plant monitoring and mapping. In: Stewart J M, Oosterhuis D M, Heitholt J J, Mauney J R, eds. Physiology of Cotton. New York: Springer, 2010. pp 304-317.
[27] Reddy A R, Reddy K R, Hodges H F . Mepiquat chloride (PIX)- induced changes in photosynthesis and growth of cotton. Plant Growth Regul, 1996,20:179-183.
doi: 10.1007/BF00043305
[28] Rosolem C A, Oosterhuis D M, Souza F S D . Cotton response to mepiquat chloride and temperature. Sci Agric, 2013,70:82-87.
doi: 10.1590/S0103-90162013000200004
[29] Yeates S J, Constable G A, McCumstie T . Developing management options for mepiquat chloride in tropical winter season cotton. Field Crops Res, 2002,74:217-230.
doi: 10.1016/S0378-4290(02)00005-9
[30] Hodges H F, Reddy V R, Reddy K R . Mepiquat chloride and temperature effects on photosynthesis and respiration of fruiting cotton. Crop Sci, 1991,31:1301-1308.
[31] Guthrie D, Landivar J, Munier D, Stichler C, Weir B. Pix application strategies. Memphis, TN: National Cotton Council of America, 1995[ 2018-12-26].
[32] Landivar J A, Zypman S, Lawlor D J, Vasek J, Crenshaw C. The use of an estimated plant Pix concentration for the determination of timing and rate of application. In: Herber D J, Richter D A, eds. 1992 Beltwide Cotton Conference. Memphis, TN: National Cotton Council of America, 1992. pp 1047-1049.
[33] Livingston S D, Stichler C R, Landivar J A. Using mepiquat chloride on the Texas Coast to reduce cotton plant height. Texas: The Texas A&M University Sytem, 1996[ 2018-12-26].
[34] 赵文超 . 黄河流域棉区棉花缩节安(DPC)定位定量及与其他因素的互作效应的研究. 中国农业大学博士学位论文, 北京, 2017.
Zhao W C . Study on Location Detection and Quantitative Effect of Mepiquat Chloride and Its Interaction with Other Factors on Cotton in the Yellow River Valley of China. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!