欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1431-1439.doi: 10.3724/SP.J.1006.2019.81088

• 研究简报 • 上一篇    下一篇

盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响

陈晓晶,刘景辉(),杨彦明,赵洲,徐忠山,海霞,韩宇婷   

  1. 内蒙古农业大学/内蒙古杂粮工程技术研究中心/全国农业科研杰出人才及其创新团队, 内蒙古呼和浩特 010019
  • 收稿日期:2018-12-13 接受日期:2019-05-12 出版日期:2019-09-12 网络出版日期:2019-06-06
  • 通讯作者: 刘景辉
  • 作者简介:E-mail: 1131036201@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31560357)

Effects of salt stress on physiological indexes and differential proteomics of oat leaf

CHEN Xiao-Jing,LIU Jing-Hui(),YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting   

  1. Inner Mongolia Agricultural University/Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region/ National Agricultural Research Outstanding Talents and Innovation Team, Huhhot 010019, Inner Mongolia, China
  • Received:2018-12-13 Accepted:2019-05-12 Published:2019-09-12 Published online:2019-06-06
  • Contact: Jing-Hui LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31560357)

摘要:

为探讨盐胁迫对燕麦叶片生理指标及蛋白组的影响, 对燕麦进行6 d盐胁迫(摩尔浓度NaCl∶Na2SO4=1∶1)处理, 测定CK与盐胁迫燕麦叶片MDA含量, SOD、POD活性与游离脯氨酸含量, 并运用Label-Free技术分析叶片差异表达蛋白质。结果表明, 盐胁迫下燕麦叶片MDA含量、SOD、POD活性分别较对照降低了16.7%、23.4%和21.2%, 游离脯氨酸较对照升高1.12%; 满足P-value≤0.05, ratio>2的差异蛋白76个(51个蛋白上调表达, 25个蛋白下调表达); 通过GO注释得到27个差异蛋白显著富集16个代谢路径, 其中氧化还原过程为33.9%, level 3统计富集的生物学过程有氧气结合和氧化还原酶活性; 运用KEGG注释得到22个差异蛋白显著富集10个生化代谢途径, 主要表现在内质网中的蛋白质加工、长寿调节途径、抗原处理和呈现、雌激素信号通路4个过程; STRING蛋白质互作网络显示21个差异蛋白中涉及翻译后修饰、蛋白质周转、分子伴侣功能的有10个, 且HSP70 (F2DYT5)和HSP90(F4Y589)可能在盐胁迫燕麦幼苗的调控中发挥重要作用。

关键词: 盐胁迫, 燕麦, Label-Free, 蛋白组

Abstract:

MDA content, SOD and POD activities, free proline content of oat leaves were determined under salt stress (molar NaCl: Na2SO4=1:1), and the differentially expressed proteins in leaves were analyzed by using Label-Free technique. The results showed that the activities of MDA, SOD and POD in oat leaves decreased by 16.7%, 23.4%, and 21.2% respectively, and free proline content increased by 1.12% compared with the control. There were 76 differential proteins with P-value ≤ 0.05 and ratio > 2 (51 proteins up-regulated and 25 proteins down-regulated). The GO annotation indicated that 27 differential proteins were significantly enriched in 16 metabolic pathways, of which the oxidation-reduction process was 33.9%. The biological processes of level 3 statistical enrichment were oxygen binding and oxidoreductase activity. Twenty-two differential proteins were obtained using KEGG annotation, which was significantly enriched in 10 biochemical metabolic pathways, mainly including four processes: protein processing in endoplasmic reticulum, longevity regulating pathway-multiple species, antigen processing and presentation, estrogen signaling pathway. The STRING protein interaction network showed that 10 of the 21 differential proteins involved in post-translational modification, protein turnover, and molecular chaperone function, and HSP70 and HSP90 interacted with the most core proteins of the whole network. It is speculated that the up-regulation of core protein is one of the reasons for the salt tolerance of oats.

Key words: salt stress, oat, Label-Free, proteomic

图1

盐胁迫对抗氧化酶活性的影响 标明不同小写字母的柱值在处理间差异显著(P < 0.05)。"

图2

差异蛋白火山图 横坐标表示差异蛋白的差异倍数(log2值), 纵轴表示P-value (-lg值), 黑色代表差异不显著的蛋白, 红色代表上调蛋白, 绿色代表下调蛋白。"

图3

差异蛋白聚类热图 纵向是样品的聚类, 横向是蛋白的聚类。从纵向聚类可以看出样品间蛋白含量的模式聚类。"

表1

BYC与BYS差异蛋白"

功能类
Functional class
蛋白名称
Protein ID
功能描述
Functional description
COG 编号
COG gene ID
可信度
Identity
上调/下调
Up(↑)/Down(↓)
能量生产和转换 Energy production and conversion (9)
C A0A193CI13 FoF1-type ATP synthase, beta subunit YP_722959 0.91
C A9LIN4 Malic enzyme YP_007218386 0.53
C
I1GZ41
Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase YP_722268
0.61
C A0A1V0EL65 Hemoglobin-like flavoprotein YP_007103351 0.30
C A0A1D5S6L5 Malic enzyme YP_005607828 0.45
C A0A1D6CUL3 NADH dehydrogenase, FAD-containing subunit YP_003322333 0.33
C I1I051 Coenzyme F420-reducing hydrogenase, beta subunit YP_007131148 0.55
C A0A1D6AN16 Ferredoxin-NADP reductase YP_007118319 0.52
C W4ZQA0 Hemoglobin-like flavoprotein YP_003692354 0.33
翻译后修饰、蛋白质周转和分子伴侣 Posttranslational modification, protein turnover, and chaperones (15)
O A0A165FYR3 Glutathione S-transferase YP_007096787 0.31
O Q3I0N4 Molecular chaperone IbpA, HSP20 family YP_005887446 0.38
O A0A1C6ZYA4 Molecular chaperone, HSP90 family YP_634186 0.45
O I1H6R7 Glutathione S-transferase YP_007063563 0.28
O F4Y589 Molecular chaperone, HSP90 family YP_634186 0.47
O A0A1D5Y3B7 ATP-dependent Clp protease ATP-binding subunit ClpA YP_007121403 0.69
O I1IF07 Molecular chaperone IbpA, HSP20 family YP_001357091 0.31
O M8BCN0 Molecular chaperone DnaK (HSP70) YP_005440675 0.49
O I1GZ93 Molecular chaperone IbpA, HSP20 family YP_522114 0.38
O M0Y631 Chaperonin GroEL (HSP60 family) YP_006371119 0.62
O F2E3N4 FKBP-type peptidyl-prolyl cis-trans isomerase YP_007057296 0.66
O M8AN59 ATP-dependent Zn proteases YP_723906 0.37
O F2DYT5 Molecular chaperone DnaK (HSP70) YP_005440675 0.49
O A0A1D5SA32 ATP-dependent Clp protease ATP-binding subunit ClpA YP_007132111 0.52
O W5EGU4 Molecular chaperone DnaK (HSP70) YP_423803 0.71
氨基酸转运和代谢; 辅酶转运和代谢; 一般功能预测; 次生代谢产物的生物合成、转运和分解代谢
Amino acid transport and metabolism; Coenzyme transport and metabolism; General function prediction only; Secondary metabolites biosynthesis, transport, and catabolism (15)
E A0A1D5XXT6 Monoamine oxidase YP_005086783 0.30
E A0A1D6CAG8 Monoamine oxidase YP_005086783 0.29
E A0A1D5YV26 3-dehydroquinate dehydratase NP_867287 0.36
E I1GLP9 5,10-methylenetetrahydrofolate reductase YP_112676 0.40
E A0A1D6BBP7 Aminopeptidase N YP_006773912 0.36
E I1HGT7 Threonine synthase YP_002463167 0.62
EH I1GU32
3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme YP_007109372
0.63

H I1HWV1 Glutamine amidotransferase PdxT (pyridoxal biosynthesis) YP_005441479 0.52
HR F2CYS4 Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases YP_007159391
0.34

R A0A1D6APK4 Zn-dependent alcohol dehydrogenase YP_001983794 0.67
功能类
Functional class
蛋白名称
Protein ID
功能描述
Functional description
COG 编号
COG gene ID
可信度
Identity
上调/下调
Up(↑)/Down(↓)
R T1MRH6 Predicted oxidoreductase (related to aryl-alcohol dehydrogenase) YP_007098133
0.45
R W4ZPA5 Uncharacterized metalloenzyme YdcJ, glyoxalase superfamily YP_628605
0.26
QR A0A1D5VID8 NADPH-dependent curcumin reductase CurA YP_003953479 0.52
Q I1ICZ4 Carotenoid cleavage dioxygenase or a related enzyme YP_007064275 0.35
Q A0A1D5UEP5 Cu2+-containing amine oxidase YP_005086886 0.34
碳水化合物的运输和代谢 Carbohydrate transport and metabolism (7)
G
Q38786
Beta-glucosidase/6-phospho-beta-glucosidase/beta-galactosidase YP_004449345
0.40
G Q8S311 Sucrose-6-phosphate hydrolase SacC, GH32 family YP_002315570 0.29
G M0WF67 6-phosphogluconate dehydrogenase YP_007142557 0.47
G I1IJ14 Ribulose bisphosphate carboxylase small subunit YP_007111326 0.63
G I1I5R4 Predicted arabinose efflux permease, MFS family YP_003405887 0.40
G A0A1D6RIU0 1,4-alpha-glucan branching enzyme YP_677957 0.47
G Q7X9A2 Ribulose bisphosphate carboxylase small subunit YP_007111326 0.63
翻译、核糖体结构和生物发生 Translation, ribosomal structure, and biogenesis (5)
J M0WGV4 Ribosome-associated translation inhibitor RaiA YP_007127538 0.38
J I1GM81 Ribosomal protein L4 NP_275148 0.41
J F2DBP2 Ribosomal protein L6P/L9E YP_007126712 0.54
J I1IU29 Ribosomal protein L3 YP_004004412 0.39
J M8CXZ0 RNA recognition motif (RRM) domain YP_844222 0.44
无机离子转运和代谢 Inorganic ion transport and metabolism (2)
P I1I9J4 Cu/Zn superoxide dismutase YP_003290884 0.49
P R7WAY7 Carbonic anhydrase YP_004682419 0.38
脂质运输和新陈代谢 Lipid transport and metabolism (3)
I M7ZQT4 Isopentenyldiphosphate isomerase YP_006428266 0.39
I I1IT00
NADPH-dependent2,4-dienoyl-CoA reductase, sulfur reductase, or a related oxidoreductase YP_824941
0.32

I O65195 Myo-inositol-1-phosphate synthase YP_005007067 0.35
信号转导机制 Signal transduction mechanisms (2)
T I1J3C6 Phosphohistidine swiveling domain of PEP-utilizing enzymes YP_002508078
0.47
T I1HYN7 Predicted NTPase, NACHT family domain YP_003890644 0.30
细胞壁/膜/包膜生物发生 Cell wall/membrane/envelope biogenesis (2)
M W5BNP0 Glycosyltransferase involved in cell wall bisynthesis YP_004596549 0.26
M I1I6H2 Nucleoside-diphosphate-sugar epimerase YP_007093680 0.72
防御机制 Defense mechanisms (1)
V I1GTZ4
Enamine deaminase RidA, house cleaning of reactive enamine intermediates, YjgF/YER057c/UK114 family YP_003319835
0.55

功能未知 Function unknown (1)
S I1IC12 Uncharacterized protein YjbI, contains pentapeptide repeats YP_007125802 0.50

图4

差异蛋白GO富集结果 图中展示了3个类别中的富集结果, 每种最多展示20种。"

图5

差异蛋白KEGG富集结果气泡图 横坐标为相应term中差异蛋白的数目与鉴定出的总蛋白数目的比值, 值越大, 说明在该term中差异蛋白富集程度越高。点的颜色代表超几何检验的P-value值, 值越小,说明检验的可靠性越大、越具统计学意义。点的大小代表相应term中差异蛋白的数目, 越大, 该term内差异蛋白就越多。"

图6

蛋白质互相作用网络图 红色节点代表上调蛋白, 蓝色节点代表下调蛋白, 节点越大, 代表与之互作的蛋白数越多, 节点间连线的粗细代表相互作用强度。"

[1] 杨真, 王宝山 . 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015,47:125-130.
Yang Z, Wang B S . Current status of saline soil resources in china and countermeasures for improvement and utilization. Shandong Agric Sci, 2015,47:125-130 (in Chinese with English abstract).
[2] Mahajan S, Tuteja N . Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005,444:139-158.
[3] 张恒, 郑宝江, 宋保华, 王思宁, 戴绍军 . 植物盐胁迫应答蛋白质组学分析. 生态学报, 2011,31:6936-6946.
Zhang H, Zheng B J, Song B H, Wang S N, Dai S J . Proteomics analysis of plant salt stress response. Acta Ecol Sin, 2011,31:6936-6946 (in Chinese with English abstract).
[4] Kim D W, Rakwal R, Agrawal G K, Jung Y H, Shibato J, Jwa N S, Iwahashi Y, Iwahashi H, Kim D H, Shim I S, Usui K . A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005,26:4521-4539.
[5] Parker R, Flowers T J, Moore A L, Harpham N V J . An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006,57:1109-1118.
[6] Sengupta S, Majumder A L . Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta, 2009,229:911-929.
[7] Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A . Identification of changes in Triticum durum L. leaf-proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem, 2008,391:381-390.
[8] Huo C M, Zhao B C, Ge R C, Shen Y Z, Huang Z J . Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Acta Genet Sin, 2004,31:1408-1414.
[9] Wang B, Song F B . Physiological responses and adaptive capacity of oats to saline-alkali stress. Ecol Environ, 2006,15:625-629.
[10] Wang B, Song F B . The effects of saline-alkali stress on water potential, percentage of dry matter and selective absorption to K+ and Na+ in oats. Syst Sci Compreh Stud Agric, 2006,22:105-108.
[11] Wang B, Zhang J C, Song F B, Zhao M, Han X Y . Physiological responses to saline-alkali in oats. J Soil Water Conserv, 2007,21:86-89.
[12] 白健慧 . 燕麦对盐碱胁迫的生理响应机制研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016.
Bai J H . Physiological Response Mechanism of Oats to Saline-Alkali Stress. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016 (in Chinese with English abstract).
[13] Murty A S, Misra P N, Haider M M . Effect of different salt concentrations on seed germination and seedling development in a few oat cultivars. Indian Agric Res J, 1984,18:129-132.
[14] 白宝璋, 史安国, 赵景阳 . 植物生理学. 北京: 北京农业出版社, 2001.
Bai B Z, Shi A G, Zhao J Y . Plant Physiology. Beijing: Beijing Agricultural Press, 2001 (in Chinese).
[15] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
Zou Q. Laboratory Physiology Experiment Guide. Beijing: China Agriculture Press, 2000 (in Chinese).
[16] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem, 1976,72:248-254.
[17] Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Kiinin E V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Smirnov S, Sverdlov A V, Vasudevan S, Wolf Y, Yin J, Natale D A . The COG data base: an updated version includes eukaryotes. BMC Bioinform, 2003,4:41.
[18] Flowers T J, Torke P F, Yeo A R . The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol, 1977,28:89-121.
[19] 高彩婷, 刘景辉, 张玉芹, 徐寿军, 张玉霞 . 短期盐胁迫下燕麦幼苗的生理响应. 草地学报, 2017,25:337-343.
Gao C T, Liu J H, Zhang Y Q, Xu S J, Zhang Y X . Physiological response of oat seedlings under short-term salt stress. Acta Agrest Sin, 2017,25:337-343 (in Chinese with English abstract).
[20] 杨舒贻, 陈晓阳, 惠文凯, 任颖, 马玲 . 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报(自然科学版), 2016,45:481-489.
Yang S Y, Chen X Y, Hui W K, Ren Y, Ma L . Research progress of plant antioxidant enzyme system response under stress. J Fujian Agric For Univ(Nat Sci Edn), 2016,45:481-489 (in Chinese with English abstract).
[21] 周莹, 赵永娟, 黄丽瑾, 唐楠煜, 唐晓清, 王康才 . 荆芥幼苗对盐胁迫的生理响应. 核农学报, 2019,33:166-175.
Zhou Y, Zhao Y J, Huang L J, Tang N Y, Tang X Q, Wang K C . Physiological response of Nepeta seedlings to salt stress. J Nucl Agric Sci, 2019,33:166-175 (in Chinese with English abstract).
[22] 刘景辉, 胡跃高 . 燕麦抗逆性研究. 北京: 中国农业出版社, 2010.
Liu J H, Hu Y G. Study on the Resistance of Oats. Beijing: China Agriculture Press, 2010 (in Chinese).
[23] 董靖, 李红丽, 董智, 白文华 . H2S对NaCl胁迫下草木樨幼苗生理指标及抗氧化酶活性的影响. 草业科学, 2018,35:2430-2437.
Dong J, Li H L, Dong Z, Bai W H . Effects of H2S on physiological indexes and antioxidant enzyme activities of alfalfa seedlings under NaCl stress. Pratac Sci, 2018,35:2430-2437 (in Chinese with English abstract).
[24] Zhao Z, Liu J H, Jia R Z, Bao S, Hai X, Chen X J . Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteom, 2019,193:10-26.
[25] Swindell W R, Huebner M, Weber A P . Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom, 2007,8:125.
[26] Jarvis P . Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol, 2008,179:257-285.
[27] Schulze-Lefert P . Plant immunity: the origami of receptor activation. Curr Biol, 2004,14:22-24.
[28] Panaretou B, Zhai C . The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biol Rev, 2008,22:110-119.
[29] Hu W H, Hu G C, Han B . Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci, 2009,176:583-590.
[30] Cui Y C, Xu G Y, Wang M L, Yu Y, Li M J, Pedro S C, da Rocha F, Xia X J . Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress. Plant Cell Tissue Organ Cult, 2013,113:331-340.
[31] Hamilton E W, Heekathorn S A . Mitochondriala daptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001,126:1266-1274.
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[3] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[4] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[5] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[6] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[7] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[8] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[9] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
[10] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[13] 邹雪, 丁凡, 余金龙, 彭洁, 邓孟胜, 王宇, 刘丽芳, 余韩开宗, 陈年伟, 王西瑶. 挥发性抑芽物质对马铃薯块茎萌芽的影响及其作用机制[J]. 作物学报, 2019, 45(2): 235-247.
[14] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[15] 毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018, 44(6): 824-835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!