欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1810-1816.doi: 10.3724/SP.J.1006.2020.04080

• 研究简报 • 上一篇    

水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应

李润枝1(), 靳晴2, 李召虎2, 王晔1, 彭真1, 段留生1,2,*()   

  1. 1 北京农学院 / 农业应用新技术北京市重点实验室 / 植物生产国家级实验教学示范中心, 北京 102206
    2 中国农业大学农学院 / 植物生长调节剂教育部工程研究中心, 北京 100193
  • 收稿日期:2020-03-29 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-13
  • 通讯作者: 段留生
  • 作者简介:李润枝, E-mail:lirunzhi7639@163.com

Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages

LI Run-Zhi1(), JIN Qing2, LI Zhao-Hu2, WANG Ye1, PENG Zhen1, DUAN Liu-Sheng1,2,*()   

  1. 1 Beijing University of Agriculture / Beijing Key Laboratory of New Technology in Agricultural Application / National Demonstration Center for Experimental Plant Production Education, Beijing 102206, China
    2 College of Agronomy, China Agricultural University / Engineering Research Center of Plant Growth Regulator, Beijing 100193, China
  • Received:2020-03-29 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-13
  • Contact: Liu-Sheng DUAN

摘要:

本研究通过对甘草种子和幼苗进行水杨酸处理, 探讨在盐胁迫下水杨酸对其形态和生理生化指标的影响, 及其与耐盐性的关系。结果表明, 0.5 mmol L-1水杨酸处理甘草种子, 可以明显促进盐胁迫下(200 mmol L-1NaCl)甘草种子胚根伸长, 增加幼苗鲜重, 降低胚根中丙二醛(MDA)和脯氨酸含量, 提高过氧化物酶(POD)活性。在盐胁迫(100 mmol L-1和200 mmol L-1NaCl)条件下, 0.5 mmol L-1水杨酸喷施甘草幼苗, 可以降低幼苗中丙二醛(MDA)和脯氨酸含量, 不同程度的提高超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性。同时, 水杨酸处理甘草种子和幼苗, 可以显著增加盐胁迫下根中甘草酸含量。综上所述, 外施水杨酸可以缓解盐胁迫对甘草种子萌发的抑制作用, 提高抗氧化酶活性和降低膜脂过氧化程度, 提高了甘草种子和幼苗对盐胁迫的耐性。

关键词: 水杨酸, 甘草, 盐胁迫, 抗逆性

Abstract:

The present study investigated the effects of salicylic acid treatments on morphology, physiological and biochemical parameters and their relationship to salt stress of G. uralensis Fisch seeds and seedlings. Under the salt stress of 200 mmol L-1 NaCl, the application of 0.5 mmol L-1 salicylic acid on G. uralensis Fisch seeds could significantly promote the elongation of radicle, increase fresh weight of seedlings, reduce the content of malondialdehyde (MDA) and proline in the radicle, and improve the activity of peroxidase (POD). Under the salt stress (i.e. 100 mmol L -1 and 200 mmol L-1 NaCl), the application of 0.5 mmol L-1 salicylic acid on G. uralensis Fisch seedling could reduce MDA and proline content, and increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in different degrees. Under salt stress condition, the application of salicylic acid could increase the root glycyrrhizinic acid content. In summary, the application of salicylic acid could improve the tolerance to salt stress by alleviating the inhibition of salt stress on the germination of seeds, increasing the activity of antioxidant enzymes, and reducing the degree of membrane lipid peroxidation.

Key words: salicylic acid, Glycyrrhiza uralensis, salt stress, stress resistance

表1

水杨酸处理对盐胁迫下甘草苗鲜重的影响"

处理
Treatment
处理时间 Treatment time
1 h 6 h 12 h 24 h 72 h
CK0 35.3±1.0 ab 43.6±2.3 a 44.5±2.4 a 48.5±2.6 a 62.4±3.6 a
SA0 36.4±1.5 a 44.7±1.7 a 45.2±2.5 a 49.1±1.9 a 64.1±2.1 a
CK200 32.3±1.6 c 33.2±0.9 c 34.8±2.1 c 37.4±1.0 c 46.8±2.0 c
SA200 34.0±1.4 bc 35.3±1.0 b 38.6±0.5 b 40.3±1.6 b 52.9±1.9 b

图 1

水杨酸处理对盐胁迫下甘草种子胚根长度的影响 处理同表1。柱上不同小写字母表示在0.05水平上有显著性差异。"

图 2

水杨酸处理对盐胁迫下甘草种子MDA(A)和脯氨酸(B)含量的影响 处理同表1。柱上不同小写字母表示在0.05水平上有显著性差异。MDA: 丙二醛。"

图 3

水杨酸处理对盐胁迫下甘草幼苗叶片中MDA含量的影响 CK0: 无SA处理+无盐胁迫; SA0: SA处理+无盐胁迫; CK100: 无SA处理+100 mmol L-1 NaCl溶液胁迫; SA100: SA处理+100 mmol L-1 NaCl溶液胁迫; CK200: 无SA处理+200 mmol L-1 NaCl溶液胁迫; SA200: SA处理+200 mmol L-1 NaCl溶液胁迫。MDA: 丙二醛。柱上不同小写字母表示在0.05水平上有显著性差异。"

图4

水杨酸处理对盐胁迫下甘草幼苗叶片中脯氨酸含量的影响 处理同图3。柱上不同小写字母表示在0.05水平上有显著性差异(P<0.05)。"

表2

水杨酸处理对盐胁迫下甘草种子氧化酶活性的影响"

处理
Treatment
SOD活性
SOD activity (U g-1 FW)
POD活性
POD activity (OD470 g-1 FW min-1)
CAT活性
CAT activity (U g-1 FW min-1)
CK0 14±1.3 c 33±1.8 c 2.3±0.2 c
SA0 16±1.2 c 25±1.7 d 2.5±0.2 c
CK200 58±3.6 a 56±2.7 b 4.1±0.3 a
SA200 35±2.0 b 67±3.7 a 3.2±0.2 b

表3

水杨酸处理对盐胁迫下甘草幼苗叶片中氧化酶活性的影响"

处理
Treatment
SOD活性
SOD activity (U g-1 FW)
POD活性
POD activity (OD470 g-1 FW min-1)
CAT活性
CAT activity (U g-1 FW min-1)
CK0 64.4±4.3 a 9.0±1.1 a 27.3±1.6 b
SA0 64.4±3.6 a 10.6±0.7 a 39.5±1.2 a
CK100 108.2±8.1 a 13.3±0.8 a 27.6±1.2 b
SA100 80.5±5.6 b 11.1±1.3 a 39.9±0.9 a
CK200 130.9±7.6 a 12.3±1.0 b 27.2±2.0 a
SA200 144.3±9.2 a 16.8±0.9 a 32.6±1.5 b

表4

水杨酸处理对盐胁迫下甘草种子甘草酸含量的影响"

处理
Treatment
1 h 6 h 12 h 24 h 72 h
CK0 0.35±0.02 b 0.45±0.12 ab 0.73±0.09 ab 1.69±0.29 ab 4.62±0.52 b
SA0 0.45±0.03 a 0.65±0.12 a 0.95±0.10 a 1.89±0.36 a 5.81±0.32 a
CK200 0.19±0.01 c 0.25±0.07 b 0.38±0.15 b 0.79±0.04 c 2.64±0.21 c
SA200 0.33±0.03 b 0.43±0.11 ab 0.71±0.19 ab 1.18±0.09 b 3.86±0.45 b

图5

水杨酸处理对盐胁迫下甘草幼苗根中甘草酸含量的影响 处理同图3。柱上不同小写字母表示在0.05水平上有显著性差异(P < 0.05)。"

[1] 马毓泉. 内蒙古植物志(第三卷). 呼和浩特: 内蒙古人民出版社, 1989. pp 245-247.
Ma Y Q. Flora of Inner Mongolia (Volume 3). Huhhot: Inner Mongolia People’s Publishing House, 1989. pp 245-247(in Chinese).
[2] 张继, 姚健, 丁兰, 郭守军, 杨永利. 甘草的利用研究进展. 草原与草坪, 2000,89(2):12-16.
Zhang J, Yao J, Ding L, Guo S J, Yang Y L. Advancement of research on the utilization of Glycyrrhiza. Grass Turf, 2000,89(2):12-16 (in Chinese with English abstract).
[3] 储纪芳. 上海市城市绿地土壤特点与改良对策. 中国城市林业, 2010,8(1):47-49.
Chu J F. Soil properties and an improvement strategy for urban landscape greening in Shanghai. J Chin Urban For, 2010,8(1):47-49 (in Chinese with English abstract).
[4] Tasgin E, Atici O, Nalbantoglu B, Popova L P. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006,67:710-715.
pmid: 16519911
[5] Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul, 2000,30:157-161.
[6] Farahbakhsh H, Saiid M S. Effects of foliar application of salicylic acid on vegetative growth of maize under saline conditions. Afr J Plant Sci, 2011,5:575-578.
[7] 徐芬芬, 叶利民, 孙海玲, 吴丹. 水杨酸对水稻种子活力及抗盐性的影响. 广东农业科学, 2009, (8):38-39.
Xu F F, Ye L M, Sun H L, Wu D. Effects of salicylic acid on seed vigor and salt resistance of rice. Guangdong Agric Sci, 2009, (8):38-39 (in Chinese).
[8] Farhangi-Abriz S, Ghassemi-Golezani K. Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J Appl Bot Food Qual, 2016,89:243-248.
[9] Faried H N, Ayyub C M, Amjad M, Ahmed R, Wattoo F M, Butt M. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidants activities and osmoregulation. J Sci Food Agric, 2016,97:1868-1875.
doi: 10.1002/jsfa.7989 pmid: 27507604
[10] 冯峰, 王育鹏, 张震, 周守标. 水杨酸通过一氧化氮信号诱导抗氧化防护来提高小麦幼苗根部耐盐性. 中国农学通报, 2008,24(9):248-252.
Feng F, Wang Y P, Zhang Z, Zhou S B. Nitric oxide is involved in salicylic acid induced-antioxidant defense under salt stress in wheat seedling roots. Chin Agric Sci Bull, 2008,24(9):248-252 (in Chinese with English abstract).
[11] 沙汉景, 刘化龙, 王敬国, 贾琰, 王新鹏, 邹德堂, 赵宏伟. 水杨酸调控作物耐盐性生理机制. 东北农业大学学报, 2017,48(3):80-88.
Sha H J, Liu H L, Wang J G, Jia Y, Wang X P, Zou D T, Zhao H W. Physiological mechanism of salicylic acid regulating salt tolerance of crops. J Northeast Agric Univ, 2017,48(3):80-88 (in Chinese with English abstract).
[12] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 盐胁迫对甘草种子发芽与子叶抗氧化指标的影响. 种子, 2005,24(9):30-32.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of salt stress on germination and antioxidant characters of cotyledons in Glycyrrhiza uralensis Fisch seeds. Seed, 2005,24(9):30-32 (in Chinese with English abstract).
[13] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 盐胁迫对甘草幼苗生长及其生理指标的影响. 华北农学报, 2006,21(4):39-42.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of salt stress on growth and some physiological indexes in Glycyrrhiza uralensis Fisch seedlings. Acta Agric Boreali-Sin, 2006,21(4):39-42 (in Chinese with English abstract).
[14] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981,32:93-101.
[15] Kar P K, Choudhuri M A. Possible mechanisms of light-induced chlorophyll eradication in senescing leaves of Hydrila veticillata. Physiol Plant, 1987,70:729-734.
[16] Aebi H. Catalase in vitro. Methods Enzymol, 1984,105:121-126.
doi: 10.1016/s0076-6879(84)05016-3 pmid: 6727660
[17] Li B L, Mei H S. Relationship between oat leaf senescence and activated oxygen metabolism. Acta Phytophysiol Sin, 1989,15:6-12.
[18] Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants. Plant Physiol Commun, 1983,1:35-37.
[19] Zhao J, Li G, Wang B M, Liu W, Nan T G, Zhai Z X, Li Z H, Li Q X. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of glycyrrhizic acid. Anal Bioanal Chem, 2006,386:1735-1740.
pmid: 17006677
[20] Uniyal R C, Nautiyal A R. Seed germination and seedling extension growth in Qugeinia dalbergioides Benth. under water salinity stress. New Forests, 1998,16:265-272.
[21] 张士功, 高吉寅, 宋景芝. 水杨酸对提高小麦抗盐效应的研究. 中国农业科技导报, 1999, (1):32-35.
Zhang S G, Gao J Y, Song J Z. New discovery of crop salt-resistance: effect of salicylic acid on salt-resistance in wheat (Triticum aestivum L.). J Agric Sci Technol China, 1999, (1):32-35 (in Chinese with English abstract).
[22] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 外源甘草酸对NaCl胁迫条件下甘草幼苗生长、根部甘草酸含量以及几种与盐胁迫相关生理指标的影响. 植物生理学通讯, 2006,42:441-444.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of exogenous glycyrrhizinic acid on the seedling growth, glycyrrhizinic acid content of roots and some physiological indexes of Glycyrrhiza uralensis Fisch. seedling under NaCl stress. Plant Physiol Commun, 2006,42:441-444 (in Chinese with English abstract).
[23] Flores A, Grau A, Laurich F, Doerfeling K. Effects of new terpenoid anologues of abscisci acid on chilling and freezing resistances. J Plant Physiol, 1988,132:362-363.
[24] Upadhyaya A, Davis T D, Walser R H. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. Hortscience, 1989,24:955-957.
[25] Feng Z Z, Guo A H, Feng Z W. Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul, 2003,39:277-283.
[26] Pell E J, Dann M S. Multiple stress and plant senescence. In: Mooney H A, Winner W E, Pell E J, eds. Integrated Response of Plant to Stress. San Diego: Academic Press, 1991. pp 189-284.
[27] Chen Z, Ricigliano J W, Klessig D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA, 1993,90:9533-9537.
pmid: 8415736
[28] Tasgin E, Atici O, Nalbantoglu B, Popova L P. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006,67:710-715.
pmid: 16519911
[29] 刘爱荣, 张远兵, 叶梅荣, 陈登科. 外源水杨酸对盐胁迫下大豆抗氧化能力的影响. 安徽科技学院学报, 2006,20(4):8-11.
Liu A R, Zhang Z Y, Ye M R, Chen D K. Effect of exogenous salicylic acid on the antioxidant ability of soybean under salt stress. J Anhui Sci Technol Univ, 2006,20(4):8-11 (in Chinese with English abstract).
[30] 佘小平, 贺军民, 张键, 邹庆春. 水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应. 西北植物学报, 2002,22:197-202.
She X P, He J M, Zhang J, Zou Q C. Mitigative effect of salicylic acid on salt stress-induced growth inhibition in cucumber seedling. Acta Bot Boreali-Occident Sin, 2002,22:197-202 (in Chinese with English abstract).
[31] 廖建雄, 王根轩. 甘草酸在甘草适应荒漠生境中的可能作用. 植物生理学通讯, 2003,9:367-370.
Liao J X, Wang G X. The possible role of glycyrrhizic acid in the adaptation of Glycyrrhiza uralensis Fisch to desert environment. Plant Physiol Commun, 2003,9:367-370 (in Chinese with English abstract).
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[3] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[4] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[5] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[6] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[7] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[8] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[9] 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439.
[10] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[11] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[12] 毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018, 44(6): 824-835.
[13] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[14] 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649.
[15] 沙汉景,胡文成,贾琰,王新鹏,田雪飞,于美芳,赵宏伟*. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报, 2017, 43(11): 1677-1688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!