欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 305-319.doi: 10.3724/SP.J.1006.2021.04112

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达

王翠娟1(), 柴沙沙2(), 史春余3,*(), 朱红4, 谭中鹏3, 季杰3, 任国博5   

  1. 1山东省烟台市农业科学研究院, 山东烟台 265500
    2湖北省农业科学院粮食作物研究所 / 湖北省甘薯工程技术研究中心 / 粮食作物种质创新与遗传改良湖北省重点实验室, 湖北武汉 430064
    3山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    4山东农业大学植物保护学院, 山东泰安 271018
    5鲁西化工有限公司, 山东聊城 252000
  • 收稿日期:2020-05-21 接受日期:2020-08-19 出版日期:2021-02-12 网络出版日期:2020-09-08
  • 通讯作者: 史春余
  • 作者简介:王翠娟, E-mail: cuijuanwangwang@126.com;|柴沙沙, E-mail: chaishasha2008@126.com
  • 基金资助:
    山东省薯类产业创新团队首席专家项目(SDAIT-16-01)资助

Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato

WANG Cui-Juan1(), CHAI Sha-Sha2(), SHI Chun-Yu3,*(), ZHU Hong4, TAN Zhong-Peng3, JI Jie3, REN Guo-Bo5   

  1. 1Institute of Sweet Potato, Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
    2Institute of Food Crops, Hubei Academy of Agricultural Sciences / Hubei Engineering and Technology Research Center of Sweetpotato / Hubei Key Laboratory of Food Crop Germplasms and Genetic Improvement, Wuhan 430064, Hubei, China
    3Resources of Horticulture Science and Engineering, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    4Crop Protection Institute, Shandong Agricultural University, Tai’an 271018, Shandong, China
    5Luxi Chemical Group Co. Ltd., Liaocheng 252000, Shandong, China
  • Received:2020-05-21 Accepted:2020-08-19 Published:2021-02-12 Published online:2020-09-08
  • Contact: SHI Chun-Yu
  • Supported by:
    Shandong Agriculture Innovation Team (SDAIT-16-01).

摘要:

探讨铵态氮素对甘薯块根形成的调控效应及其作用机制, 本研究利用单株结薯数差异显著的甘薯品种商薯19 (S19)和济徐23 (J23)为材料, 于2014—2015年进行大田试验和盆栽辅助试验, 设置60 kg hm-2低氮(LN60)和180 kg hm-2高氮(HN180) 2个氮素水平, 酰胺态(XN)和铵态(AN) 2种氮素形态, 进行甘薯幼根向块根分化关键时期的发育解剖观察和IbEXP1基因的表达分析。结果表明, 单株有效结薯数较高的商薯19块根产量显著高于济徐23, 生长前期甘薯块根的分化建成相较于块根的膨大生长更利于最终块根产量的形成。同时, 2个甘薯品种60 kg hm-2铵态氮素处理在茎叶封垄期建成更多根径介于0.5~5.0 cm的薯块, 显著提高了收获期的单株有效薯块数目, 块根产量最高。其中, 60 kg hm-2铵态氮素处理2个品种甘薯幼根在前形成层时期原生木质部束的导管数目及中柱薄壁组织木质化薄壁细胞数目最多; 初生形成层发育时期IbEXP1基因高水平表达, 幼根直径、中柱直径大, 原生、次生木质部束数目多; 次生形成层活动初期IbEXP1基因的相对表达和中柱薄壁细胞的木质化程度介于不施氮和高氮素处理之间, 但幼根直径、中柱直径和中柱占横截面比均显著最高, 在块根分化建成中建立了中柱薄壁细胞木质化活动和分裂活动的平衡。

关键词: 甘薯, 铵态氮素, 块根分化建成, 解剖观察, IbEXP1基因

Abstract:

This study chose Shangshu 19 (S19) and Jixu 23 (J23) categorized by valid tuber root number per plant as analyzing varieties and arranged treatment combinations consisted of two nitrogen forms ammonium nitrogen (AN) and amide nitrogen (XN) integrated with two nitrogen rates 60 kg hm-2 (LN60) and 180 kg hm-2 (HN180), using field and pot trial assays, plus a check treatment received no nitrogen supply in order to make research on the anatomical observation on sweet potato tuber root differentiation and expression characteristics of IbEXP1 gene associated with tuber root formation in ammonia nitrogen in 2014 and 2015. Our results showed that the storage root yield of Shangshu 19 associated with more valid tuber root number per plant was significantly higher than Jixu 23 at harvest stage, which was significant difference compared with each other. In addition, nitrogen levels and nitrogen forms had significant interaction effects. The 60 kg hm-2 ammonium nitrogen treatment in two sweet potato genotypes achieved the highest final storage root yield in field experiment and showed higher valid tuber root number per plant, which attributed to the younger tubers whose root diameter between 0.5 cm and 5.0 cm during the canopy closure period. It had been observed that 60 kg hm-2 ammonium nitrogen treatment possessed the most vessels in the primary xylem bundle and the lignified parenchyma cells of the stele tissues in the pre-cambial period, followed with possessing high level expression of IbEXP1 gene, the biggest root diameter and stele diameter and the most number of primary and secondary xylem bundles in the course of primary cambium growth. As the vascular cambium was initiated, relative expression of IbEXP1 gene at 60 kg hm-2ammonium nitrogen treatment and the degree of parenchyma cells lignification were intermediate between no nitrogen application and high nitrogen treatments, however, the diameter of root and stele and the ratio of them were highest, which achieved the perfect harmony in lignification and division of parenchyma cells in tuberization.

Key words: sweet potato, ammonium nitrogen, tuberization, anatomical observation, IbEXP1 gene

表1

块根产量及产量性状(大田, 2014-2015)"

品种
Variety
处理
Treatment
块根产量
FYSR (kg hm-2)
单株有效薯块数
VSRNP (plant-1)
平均单薯鲜重
AFWP (g)
商薯19
S19
N0 40,461.31 b 4.82 b 168.29 d
AN60 43,567.71 a 5.24 a 166.62 d
XN60 39,218.75 c 3.82 c 205.46 b
AN180 37,667.41 d 3.89 c 194.89 c
XN180 35,982.15 e 3.20 d 227.45 a
济徐23
J23
N0 35,953.13 b 2.96 b 247.16 c
AN60 38,127.61 a 3.95 a 198.25 e
XN60 33,306.37 c 2.62 c 262.35 b
AN180 33,391.93 c 3.20 b 209.66 d
XN180 32,578.13 d 2.38 d 272.92 a

表2

氮素形态和氮素用量对收获期块根产量与单株有效薯块数目性状影响的方差分析(F值, 2014-2015)"

变异来源
Source of variation
块根产量
Yield (kg hm-2)
单株有效薯块数
Valid storage root number per plant
V 34.56* 230.33**
A 30.69** 24.65**
F 16.48** 66.99**
A×F 5.79** 19.91**

表3

封垄期单株薯块鲜重、单株薯块数目及其组成(2014-2015)"

品种
Variety
处理
Treatment
薯块鲜重
VSRFWP
(g plant-1)
薯块数
VSRNP
(per plant)
YSR (cm) DSR (cm) MSR (cm)
0.5 ≤ Φ < 1.0 1.0 ≤ Φ < 5.0 Φ ≥ 5.0
商薯19
S19
N0 79.15 b 6.19 b 2.00 cd 2.67 b 1.50 a
AN60 85.97 a 7.17 a 3.00 a 4.00 a 0.34 d
XN60 78.34 b 4.50 c 2.17 c 1.67 c 0.67 b
AN180 77.44 b 4.84 c 2.67 b 1.67 c 0.50 c
XN180 65.01 c 3.34 d 1.67 d 1.05 d 0.67 b
济徐23
J23
N0 87.41 b 4.00 b 0.67 1.00 c 2.34 a
AN60 96.71 a 5.25 a 1.50 a 2.50 a 1.25 c
XN60 87.79 b 3.17 c 0.84 1.17 bc 1.67 b
AN180 70.59 c 3.00 cd 0.50 1.33 b 1.17 c
XN180 70.30 c 2.67 d 0.75 1.34 b 0.67 d

图1

秧苗栽后7 d甘薯S19不定根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色的横切面图(2015) SF: 番红-固绿染色; Ph: 间苯三酚染色; PAS: 高碘酸希夫染色; PX: 原生木质部; PPh: 初生韧皮部。"

图2

秧苗栽后7 d甘薯J23不定根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色的横切面图(2015) 缩写同图1。"

表4

秧苗栽后7 d幼根根内部结构部分量化指标(2015)"

品种
Variety
处理
Treatment
根直径
RD
(mm)
中柱直径
SD
(mm)
原生木质部
数目
PSN
原生木质部
导管数目
PXCN
木质化薄壁
细胞数目
LPCN
中柱占
横截面比例
RSCS (%)
商薯19
S19
N0 0.92 a 0.34 a 5.00 a 27.00 b 3.00 c 11.95 b
AN60 1.00 a 0.38 a 5.33 a 83.00 a 37.00 a 14.62 a
XN60 0.91 a 0.33 a 5.00 a 70.00 a 23.00 b 13.37 a
AN180 0.77 b 0.29 b 5.00 a 38.00 b 18.00 b 14.61 a
XN180 0.79 b 0.27 b 5.00 a 37.00 b 15.00 b 13.47 a
济徐23
J23
N0 0.94 a 0.31 b 6.00 a 41.00 b 3.00 c 11.11 c
AN60 1.09 a 0.42 a 6.00 a 70.00 a 28.00 a 15.01 a
XN60 0.98 a 0.37 b 6.33 a 62.00 a 24.00 a 14.44 a
AN180 0.95 a 0.35 b 6.00 a 42.00 b 9.00 c 13.77 ab
XN180 0.93 a 0.35 b 6.00 a 32.00 c 18.00 b 14.36 a

图3

秧苗栽后14 d甘薯S19幼根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色的横切面图(2015) Sx: 次生木质部; LPCS: 中柱木质化薄壁细胞; Vc: 维管形成层。"

图4

秧苗栽后14 d甘薯J23幼根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色的横切面图(2015) 缩写同图3。"

表5

秧苗栽植后14 d幼根根内部结构部分量化指标"

品种
Variety
处理
Treatment
根直径
RD (mm)
中柱直径
SD (mm)
原生木质部束数目
PSN
次生木质部束数目
SXN
木质化薄壁细胞数目
LPCN
中柱占横截面比例
RSCS (%)
商薯19
S19
N0 1.22 a 0.88 b 5.00 b 8.00 c 29.00 d 40.96 b
AN60 1.24 a 0.96 a 6.33 a 14.00 a 71.00 c 47.61 a
XN60 1.10 b 0.69 c 6.00 a 10.00 b 68.00 c 47.61 a
AN180 1.14 b 0.74 c 5.00 b 10.00 b 83.00 b 42.19 b
XN180 1.17 b 0.70 c 5.00 b 6.00 c 126.00 a 40.96 b
济徐23
J23
N0 1.42 ab 0.85 a 7.00 a 9.00 b 19.00 d 33.64 a
AN60 1.53 a 0.85 a 8.00 a 13.00 a 61.00 c 27.04 a
XN60 1.30 b 0.69 b 7.00 a 11.00 ab 59.00 c 28.09 a
AN180 1.48 a 0.85 a 6.00 b 11.00 ab 110.00 a 33.64 a
XN180 1.21 c 0.54 c 6.33 b 10.00 b 91.00 b 20.25 b

图5

秧苗栽后21 d甘薯S19分化根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色横切面图(2015) A: 淀粉体; Msv: 导管周围分裂组织。"

图6

秧苗栽后21 d甘薯J23分化根切片番红-固绿染色、间苯三酚染色和高碘酸希夫染色横切面图(2015) 缩写同图5。"

表6

秧苗栽植后21 d分化根根内部结构部分量化指标(2015)"

品种
Variety
处理
Treatment
根直径
RD (mm)
中柱直径
SD (mm)
次生维管束数目
SCN
木质化薄壁细胞数目
LPCN
中柱占横截面比例
RSCS (%)
商薯19
S19
N0 1.85 c 1.02 c 10.00 c 45.00 d 15.00 c
AN60 2.56 a 1.46 a 20.00 a 64.00 c 32.00 a
XN60 2.10 b 1.20 b 15.00 b 87.00 b 23.00 b
AN180 2.17 b 1.22 b 16.00 ab 79.00 b 18.00 c
XN180 1.71 c 0.91 c 16.00 ab 102.00 a 30.00 a
济徐23
J23
N0 2.01 c 1.13 c 11.00 b 30.00 b 18.00 b
AN60 3.39 a 2.07 a 18.00 a 39.00 a 28.00 a
XN60 2.56 b 1.55 b 21.00 a 30.00 b 24.00 ab
AN180 2.22 b 1.41 b 17.00 a 31.00 b 16.00 b
XN180 2.14 c 1.10 c 14.00 b 40.00 a 30.00 a

图7

块根分化建成期间根系IbEXP1基因表达(2015) 同一列中不同小写字母表示数值在0.05的水平上差异显著。处理同表1; 缩写同表4。"

[1] 张鹏, 许智宏. 加强薯类基础研究,推动农业产业稳定发展. 植物生理学报, 2017,53:747-748.
Zhang P, Xu Z H. Intensifying basic research on root and tuber crops for sustainable agro-industrial development. Plant Physiol J, 2017,53:747-748 (in Chinese).
[2] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 211.
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 211 (in Chinese).
[3] 周全卢. 秋甘薯不同类型品种干物质积累特性研究. 西南大学硕士学位论文, 重庆, 2007.
Zhou Q L. Research of Dry Matter Accumulating Characters on Autumn Sweet Potato Varieties of Different Types. MS Thesis of Southwest University, Chongqing, China, 2007 (in Chinese with English abstract).
[4] 王翠娟, 史春余, 王振振, 柴沙沙, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014,40:1677-1685.
Wang C J, Shi C Y, Wang Z Z, Chai S S, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014,40:1677-1685 (in Chinese with English abstract).
[5] Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of b-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991,96:902-909.
doi: 10.1104/pp.96.3.902 pmid: 16668273
[6] 安建刚, 敬夫, 丁祎, 肖怡, 尚浩浩, 李宏利, 杨晓璐, 唐道彬, 王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响. 作物学报, 2018,44:1858-1866.
An J G, Jing F, Ding W, Xiao Y, Shang H H, Li H L, Yang X L, Tang D B, Wang J C. Effects of split application of nitrogen fertilizer on yield, quality and nitrogen use efficiency of sweet potato. Aata Agron Sin, 2018,44:1858-1866 (in Chinese with English abstract).
[7] Phillips S B, Warren J G, Mullins G L. Nitrogen rate and application timing affect Beauregard sweetpotato yield and quality. Hortic Sci, 2005,40:214-217.
[8] Villordon A, LaBonte D, Solis J. Characterization of Lateral root development at the onset of storage root initiation in ‘Beauregard’ sweet potato adventitious roots. Hortic Sci, 2012,47:961-968.
[9] Togari Y. A study of tuberous root formation in sweet potato. Bull Nat Agric Exp Stn Tokyo, 1950,68:1-96 (in Japanese with English abstract).
[10] Wilson L A, Lowe S B. The anatomy of the root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Ann Bot, 1973,37:633-643.
[11] Gifford M L, Dean A, Gutierrez R A, Coruzzi G M, Birnbaum K D. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA, 2008,105:803-808.
pmid: 18180456
[12] Ukom A N, Ojimelukwe P C, Okpara D A. Nlutrient composition of selected sweet potato varieties as influenced by different levels of nitrogen fertilizer applicaiton. Pakistan J Nutr, 2009,8:1791-1795.
[13] 陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效唑对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012,38:1728-1733.
Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron Sin, 2012,38:1728-1733 (in Chinese with English abstract).
[14] 史春余, 张晓冬, 张超, 陈晓光. 甘薯对不同形态氮素的吸收与利用. 植物营养与肥料学报, 2010,16:389-394.
Shi C Y, Zhang X D, Zhang C, Chen X G. Absorption and utilization of different nitrogen forms for sweet potato. Plant Nutr Fert Sci, 2010,16:389-394 (in Chinese with English abstract).
[15] 李勇, 周毅, 郭世伟, 沈其荣. 铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响. 中国水稻科学, 2007,21:294-298.
Li Y, Zhou Y, Guo S W, Shen Q R. Effects of different N forms on root morphology and water absorption of low land and upland rice plants. Chin J Rice Sci, 2007,21:294-298 (in Chinese with English abstract).
[16] Lima J E, Kojima S, Takahashi H. Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter1, 3-dependent manner. Plant Cell, 2010,22:3621-3633.
pmid: 21119058
[17] Camberato J J, Bock B R. Spring wheat response to enhanced ammonium supply: I. Dry matter and nitrogen content. Agron J, 1990,82:463-467.
[18] Tanaka M, Kato N, Nakayama H. Expression of class 1Knotted1-like homeobox genes in the storage roots of sweet potato (Ipomoea batatas). J Plant Physiol, 2008,165:1726-1735.
doi: 10.1016/j.jplph.2007.11.009 pmid: 18242774
[19] Noh S A, Lee H S, Kim Y S. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013,64:129-142.
pmid: 22945944
[20] 叶宝兴, 毕建杰, 孙印石. 植物细胞与组织研究方法. 北京: 化学工业出版社, 2011. pp 49-57.
Ye B X, Bi J J, Sun Y S. Research Methods of Plant Cells and Tissues. Beijing: Chemical Industry Press, 2011. pp 49-57(in Chinese).
[21] 刘德高. 过表达IbP5CR、IbERD3、IbELT、IbNFU1基因的甘薯植株的获得及耐盐性鉴定. 中国农业大学博士学位论文, 北京, 2014.
Liu D G. Production and Salt Tolerance Evaluation of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbP5CR, IbERD3, IbELT or IbNFU1 Gene PhD Dissertation of China Agricultural University, Beijing, 2014 (in Chinese with English abstract).
[22] 杨元军, 王玉萍, 翟红, 刘庆昌. 甘薯块根总RNA的高效快速提取方法. 分子植物育种, 2008,6:193-196.
Yang Y J, Wang Y P, Zhai H, Liu Q C. A simple and rapid procedure for RNA isolation from storage roots of sweetpotato (Ipomoea batatas). Mol Plant Breed, 2008,6:193-196 (in Chinese with English abstract).
[23] Ravi V, Indira P. Crop physiology of sweet potato. Hortic Rev, 1999,23:277-339.
[24] Belehu T, Hammes P S, Robbertse P J. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust J Bot, 2004,52:551-558.
[25] 张庆会, 徐步东. 试论甘薯块根的生长机理. 生物学通报, 2002,37(8):22-23.
Zhang Q H, Xu B D. Growth mechanism of sweet potato tuber root. Bull Biol, 2002,37(8):22-23 (in Chinese with English abstract).
[26] Xie F L, Burklew C E, Yang Y F, Liu M, Xiao P, Zhang B H, Qiu D. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta, 2012,236:101-113.
pmid: 22270559
[27] Tao X, Gu Y H, Wang H Y, Zheng W, Li X, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One, 2012,7:e36234.
doi: 10.1371/journal.pone.0036234 pmid: 22558397
[28] Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Nadir L A. Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013,14:460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507
[29] Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell, 2002,14:3237-3253.
doi: 10.1105/tpc.006437 pmid: 12468740
[30] Noh S A, Lee H S, Huh E J. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweet potato. Exp Bot, 2010,61:1337-1349.
[31] Noh S A, Lee H S, Kim Y S. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013,64:129-142.
doi: 10.1093/jxb/ers236 pmid: 22945944
[32] Bae J M, Kwak M S, Noh S A, Oh M J, Kim Y S, Shin J S. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res, 2014,23:657-667.
doi: 10.1007/s11248-014-9804-1
[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[4] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[5] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[6] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[7] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[8] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[9] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[10] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[11] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[12] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[13] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[14] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[15] 安建刚,敬夫,丁祎,肖怡,尚浩浩,李宏利,杨晓璐,唐道彬,王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响[J]. 作物学报, 2018, 44(12): 1858-1866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!