欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1054-1069.doi: 10.3724/SP.J.1006.2021.04078

• 专题:主要麻类作物基因组学与遗传改良 • 上一篇    下一篇

大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析

尹明(), 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐*()   

  1. 中国农业科学院麻类研究所/农业农村部麻类生物学与加工重点实验室, 湖南长沙 410205
  • 收稿日期:2020-03-27 接受日期:2020-11-13 出版日期:2021-06-12 网络出版日期:2020-12-28
  • 通讯作者: 黄思齐
  • 作者简介:E-mail: 1586887698@qq.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-16-E02)

Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.)

YIN Ming(), YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi*()   

  1. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture and Rural Affairs, Changsha 410205, Hunan, China
  • Received:2020-03-27 Accepted:2020-11-13 Published:2021-06-12 Published online:2020-12-28
  • Contact: HUANG Si-Qi
  • Supported by:
    The China Agriculture Research System(CARS-16-E02)

摘要:

GRAS转录因子在植物生长发育及抗逆境胁迫中具有重要作用。本文对大麻GRAS转录因子家族进行了全基因组鉴定, 对其理化性质、系统进化发育、基因结构、基因间的共线性关系进行了分析, 并利用云麻1号及内蒙古小粒大麻的转录组数据分析其在镉胁迫下的表达量变化。结果表明, 大麻基因组中鉴定出54个GRAS基因, 96.30%的基因编码酸性蛋白, 长度为415~757 aa, 分子质量为46,405.05~85,748.52 kD, 等电点为4.77~8.54, 划分为9个亚家族, 其中PAT1、LS、SHR、HAM保守性较高, PAT1、LISCL、CsGRASA出现大量基因串联重复, CSGRAS12基因在5种植物的共线性分析中均存在。将2个大麻品种进行镉胁迫处理发现, 云麻1号株高下降10.48%, 鲜重下降6.33%; 内蒙古小粒大麻株高下降66.07%, 鲜重下降42.67%, 表明云麻1号较内蒙古小粒大麻更耐镉胁迫。云麻1号的54个GRAS基因中, 42个(77.78%)基因表达上调1.05~18.10, 11个(20.37%)基因表达下调0.13~0.91; 内蒙古小粒大麻的54个GRAS基因中, 27个(50.00%)基因表达上调1.01~6.46, 27个(50.00%)基因表达下调0.30~0.96。将两者GRAS基因进行同源基因鉴定并分析其表达情况发现, 耐镉品种云麻1号中40个同源GRAS基因较内蒙古小粒大麻在镉胁迫下的上调或下调幅度更明显, 表明这些GRAS基因与镉胁迫有明显相关性。本文可为挖掘和验证大麻GRAS基因提供参考。

关键词: 大麻, GRAS转录因子, 系统发育分析, 基因结构分析, 表达分析

Abstract:

GRAS transcription factors play important roles in plant growth, development and stress responses. In order to systematically analyze the GRAS transcription factor family in hemp, we performed a genome-wide identification of hemp GRAS genes, analyzed their physical and chemical properties, phylogenetic development, gene structure, and GRAS gene expression under cadmium stress in two hemp varieties (Yunma 1 and Inner Mongolia Xiaolidama). The results showed that there were 54 GRAS transcription factors in hemp genome, with the protein length from 415 to 757, encoding 96.30% of acidic proteins, the molecular weight from 46,405.05 to 85,748.52 kD and the isoelectric point from 4.77 to 8.54. These transcription factors were divided into nine subfamilies, among which, PAT1, LS, SHR, and HAM were more conserved, PAT1, LISCL, and CsGRASA had a large number of tandem repeats of genes, and CSGRAS12 genes were all present in collinearity analysis of five plants. Yunma 1 and Inner Mongolia Xiaolidama were treated with cadmium stress. Plant height and the fresh weight decreased in Yunma 1 and Inner Mongolia Xiaolidama, by 10.48%, 6.33% and 66.07%, 42.67%, respectively, indicating that Yunma 1 was more tolerant than Inner Mongolia Xiaolidama under cadmium stress. Among 54 GRAS genes in Yunma 1, 42 genes (77.78%) were up-regulated by 1.05-18.10, and 11 genes (20.37%) were down-regulated by 0.13-0.91. Among 54 GRAS genes in small-grain cannabis in Inner Mongolia, 27 genes (50.00%) were up-regulated by 1.01-6.46, and 27 genes (50.00%) were down-regulated by 0.30-0.96. This study showed that the 40 homologous GRAS gene in Yunma 1 were significanlty up- or down-regulated than those in Inner Mongolia Xiaolidama under cadmium stress, indicating that these GRAS genes were significantly related to cadmium stress. This study can provide a reference for subsequent mining and verification of GRAS genes in hemp.

Key words: hemp, GRAS transcription factors, phylogenetic analysis, gene structure analysis, expression analysis

表1

GRAS基因及相关信息"

基因名称
Gene name
NCBI基因登录号
NCBI gene accession
蛋白长度
Length (aa)
等电点
pI
分子量
Molecular weight (kD)
CsGRAS1 LOC115696991 458 4.77 52,006.96
CsGRAS2 LOC115698980 494 5.15 54,901.55
CsGRAS3 LOC115698988 724 5.99 81,047.24
CsGRAS4 LOC115700662 455 5.66 49,596.06
CsGRAS5 LOC115701004 454 6.68 50,178.21
CsGRAS6 LOC115702418 528 5.24 57,541.56
CsGRAS7 LOC115703632 559 6.21 62,215.78
CsGRAS8 LOC115705736 722 5.77 78,760.91
CsGRAS9 LOC115705815 722 5.72 78,817.91
CsGRAS10 LOC115705915 721 5.74 78,730.89
CsGRAS11 LOC115706185 539 5.51 59,352.41
CsGRAS12 LOC115707313 544 6.33 61,258.62
CsGRAS13 LOC115710202 582 4.92 64,716.73
CsGRAS14 LOC115710247 582 4.92 64,716.73
CsGRAS15 LOC115710247 582 4.92 64,716.73
CsGRAS16 LOC115710247 582 4.92 64,716.73
CsGRAS17 LOC115710247 582 4.92 64,716.73
CsGRAS18 LOC115710247 582 4.92 64,716.73
CsGRAS19 LOC115710247 582 4.92 64,716.73
CsGRAS20 LOC115710262 514 4.93 57,833.13
CsGRAS21 LOC115711337 467 5.82 52,554.66
CsGRAS22 LOC115711473 549 6.13 61,322.10
CsGRAS23 LOC115712444 497 5.28 56,735.16
CsGRAS24 LOC115712525 504 5.68 56,355.13
CsGRAS25 LOC115712712 613 5.08 67,527.83
CsGRAS26 LOC115712875 508 6.30 56,609.53
CsGRAS27 LOC115714404 622 5.33 68,325.01
CsGRAS28 LOC115714408 600 5.95 66,439.36
CsGRAS29 LOC115715793 628 5.08 71,316.90
CsGRAS30 LOC115716239 617 6.03 68,009.17
CsGRAS31 LOC115716331 700 5.99 76,887.41
CsGRAS32 LOC115716409 616 6.19 67,882.02
CsGRAS33 LOC115716431 752 6.29 82,128.85
CsGRAS34 LOC115717012 697 5.36 77,185.61
CsGRAS35 LOC115718811 645 6.73 73,634.61
CsGRAS36 LOC115718865 746 5.80 85,106.83
CsGRAS37 LOC115718865 709 5.66 80,996.82
CsGRAS38 LOC115718866 630 7.24 72,454.10
CsGRAS39 LOC115718867 621 5.69 71,491.35
CsGRAS40 LOC115718867 551 6.37 63,913.20
CsGRAS41 LOC115718867 506 8.54 58,824.80
CsGRAS42 LOC115719316 749 5.03 84,965.93
CsGRAS43 LOC115719656 757 5.10 85,748.52
CsGRAS44 LOC115719656 636 5.20 73,211.22
基因名称
Gene name
NCBI基因登录号
NCBI gene accession
蛋白长度
Length (aa)
等电点
pI
分子量
Molecular weight (kD)
CsGRAS45 LOC115719730 698 5.68 78,688.43
CsGRAS46 LOC115722004 577 4.94 66,178.24
CsGRAS47 LOC115723037 575 5.14 64,688.92
CsGRAS48 LOC115723133 436 5.58 49,164.54
CsGRAS49 LOC115723500 454 6.00 51,420.59
CsGRAS50 LOC115724710 577 6.05 64,503.06
CsGRAS51 LOC115724919 548 5.14 61,008.73
CsGRAS52 LOC115724919 415 5.20 46,405.05
CsGRAS53 LOC115725148 463 5.64 52,596.41
CsGRAS54 LOC115725491 756 6.16 85,229.91

图1

大麻、拟南芥的GRAS基因系统进化树 不同颜色表示不同的亚家族, 同一颜色的不同基因均属同一亚家族。"

图2

大麻GRAS基因结构分析"

图3

大麻GRAS基因基序"

图4

大麻GRAS基因的染色体定位"

图5

大麻染色体间GRAS基因共线性分析"

图 6

雷蒙德氏棉、大麻、水稻间GRAS基因共线性分析"

图7

大豆、大麻、玉米间GRAS基因共线性分析"

表2

云麻1号GRAS基因表达"

基因名称
Gene name
云麻1号对照组
Yunma 1
control check
云麻镉胁迫组
Yunma 1
cadmium stress
变化值
Fold change
基因名称
Gene name
云麻对照组
Yunma 1
control check
云麻镉胁迫组
Yunma 1
cadmium stress
变化值
Fold change
CsGRAS24 2.44 0.33 0.13* CsGRAS28 2.31 4.07 1.76*
CsGRAS46 4.02 0.58 0.14* CsGRAS13 4.74 9.76 2.06*
CsGRAS25 42.77 20.24 0.47* CsGRAS32 13.12 27.08 2.06*
CsGRAS33 6.56 3.12 0.48* CsGRAS52 8.33 18.67 2.24*
CsGRAS2 1.62 0.78 0.48 CsGRAS1 0.21 0.46 2.24
CsGRAS11 30.07 14.91 0.50* CsGRAS29 0.21 0.46 2.24
CsGRAS22 1.63 0.91 0.56 CsGRAS12 19.52 44.15 2.26*
CsGRAS54 6.20 4.59 0.74 CsGRAS30 7.67 18.41 2.40*
CsGRAS6 0.32 0.28 0.88 CsGRAS5 0.37 0.97 2.65
CsGRAS42 9.74 8.87 0.91 CsGRAS7 1.00 2.68 2.69*
CsGRAS48 0.25 0.26 1.05 CsGRAS38 2.22 6.10 2.75*
CsGRAS9 6.16 6.88 1.12 CsGRAS43 0.74 2.10 2.85*
CsGRAS4 8.31 9.43 1.14 CsGRAS47 0.04 0.11 2.91
CsGRAS21 2.66 3.16 1.19 CsGRAS40 0.31 0.99 3.19
CsGRAS20 0.76 0.93 1.21 CsGRAS17 3.35 11.74 3.51*
CsGRAS10 7.49 9.54 1.27 CsGRAS37 12.42 61.52 4.95*
CsGRAS36 8.79 11.82 1.34 CsGRAS41 0.21 1.19 5.59*
CsGRAS31 14.46 19.51 1.35 CsGRAS26 0.04 0.21 5.64
CsGRAS23 0.20 0.27 1.37 CsGRAS50 8.33 57.94 6.96*
基因名称
Gene name
云麻1号对照组
Yunma 1
control check
云麻镉胁迫组
Yunma 1
cadmium stress
变化值
Fold change
基因名称
Gene name
云麻对照组
Yunma 1
control check
云麻镉胁迫组
Yunma 1
cadmium stress
变化值
Fold change
CsGRAS15 3.04 4.43 1.46 CsGRAS3 0.01 0.14 10.50*
CsGRAS49 0.97 1.44 1.49 CsGRAS39 0.03 0.60 18.10*
CsGRAS8 8.98 13.70 1.53* CsGRAS18 0.00 0.30 0.30*
CsGRAS27 18.49 28.66 1.55* CsGRAS19 0.00 0.17 0.17*
CsGRAS44 4.33 6.75 1.56 CsGRAS34 0.00 0.03 0.03
CsGRAS16 0.32 0.51 1.59 CsGRAS35 0.00 0.32 0.32*
CsGRAS14 0.76 1.24 1.62* CsGRAS45 0.00 0.00 0.00
CsGRAS51 6.82 11.11 1.63* CsGRAS53 0.27 0.00 -0.27*

表3

内蒙古小粒大麻GRAS基因表达"

基因名称
Gene name
内蒙大麻对照组
Inner Mongolia Xiaolidama
control check
内蒙大麻镉胁迫组
Inner Mongolia Xiaolidama
cadmium stress
变化值
Fold change
基因名称
Gene name
内蒙大麻对照组
Inner Mongolia Xiaolidama
control check
内蒙大麻镉胁迫组
Inner Mongolia Xiaolidama
cadmium stress
变化值
Fold change
CsGRAS24 5.40 1.61 0.30* CsGRAS31 20.57 20.70 1.01
CsGRAS53 0.84 0.37 0.44* CsGRAS40 0.60 0.62 1.02
CsGRAS22 2.70 1.35 0.50* CsGRAS39 0.31 0.33 1.05
CsGRAS48 0.34 0.17 0.50 CsGRAS42 9.72 10.66 1.10
CsGRAS25 49.36 28.23 0.57* CsGRAS4 8.38 9.73 1.16
CsGRAS21 2.54 1.61 0.63 CsGRAS44 4.87 5.91 1.21
CsGRAS33 12.12 7.76 0.64* CsGRAS52 12.38 15.14 1.22
CsGRAS36 10.98 7.07 0.64 CsGRAS13 6.41 8.78 1.37
CsGRAS41 1.27 0.97 0.76 CsGRAS47 0.08 0.11 1.38
CsGRAS17 8.55 6.64 0.78 CsGRAS28 1.85 2.58 1.39
CsGRAS11 37.71 29.54 0.78 CsGRAS30 12.06 17.68 1.47*
CsGRAS18 0.22 0.18 0.78* CsGRAS9 6.75 9.90 1.47*
CsGRAS20 0.28 0.23 0.79 CsGRAS51 14.04 21.05 1.50*
CsGRAS7 1.70 1.39 0.82 CsGRAS38 2.68 4.34 1.62
CsGRAS6 0.28 0.23 0.82 CsGRAS12 17.93 31.35 1.75*
CsGRAS1 0.48 0.40 0.83 CsGRAS15 1.82 3.65 2.00
CsGRAS29 0.48 0.40 0.83 CsGRAS45 0.04 0.10 2.73
CsGRAS14 1.08 0.94 0.87 CsGRAS16 0.10 0.30 3.00
CsGRAS27 20.63 18.12 0.88 CsGRAS50 13.12 41.91 3.19*
CsGRAS23 0.29 0.26 0.89 CsGRAS3 0.01 0.05 3.38
CsGRAS49 1.10 0.99 0.89 CsGRAS5 0.31 1.20 3.87*
CsGRAS32 13.96 12.66 0.91 CsGRAS37 8.00 34.34 4.29*
CsGRAS8 14.56 13.35 0.92 CsGRAS43 2.10 9.65 4.59*
CsGRAS10 4.19 3.87 0.92 CsGRAS26 0.08 0.50 6.46*
CsGRAS54 7.36 6.96 0.94 CsGRAS19 0.00 0.17 0.17*
CsGRAS46 1.17 1.12 0.95 CsGRAS34 0.00 0.23 0.23*
CsGRAS2 2.82 2.71 0.96 CsGRAS35 0.00 0.89 0.89*

图8

两个大麻品种在正常环境与镉胁迫环境的生长状况"

图9

GRAS同源基因表达"

图10

12个基因的qPCR验证表达 *, **, ***分别表示在0.05、0.01和0.001水平显著差异。"

[1] Zheng X W, Yi D X, Shao L H, Li C. In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in Medicago truncatula. J Integr Agric, 2017,16:1576-1591.
[2] Borrill P, Harrington S A, Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3: Genes Genom Genet, 2017,7:3019-3029.
[3] Carolin H, Hannah K, Sven H, Stefanie W, Nina R, Natalia R. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr Biol, 2016,26:2770-2778.
[4] Zhang L, Li Q, Chen J F, Chen W S. Computational identification and systematic classification of novel GRAS genes in Isatis indigotica. Chin J Nat Med, 2016,14:161-176.
doi: 10.1016/S1875-5364(16)30013-9 pmid: 27025363
[5] Chen K M, Li H W, Chen Y F, Zheng Q, Li B, Li Z S. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. J Genet Genomics, 2015,42:21-32.
[6] Li S P, Zhao Y H, Zhao Z, Wu X L, Sun L F, Liu Q S, Wu Y K. Crystal structure of the GRAS domain of SCARECROW-LIKE7 in Oryza sativa. Plant Cell, 2016,28:1025-1034.
[7] Zhang H, Mi L M, Xu L, Yu C X, Li C, Chen C L. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci Rep, 2019,9:59-66.
[8] Liu S, Xuan L, Xu L A, Huang M R, Xu M. Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar. Springerplus, 2016,5:1-8.
pmid: 26759740
[9] 王树林. 马铃薯StGRAS基因家族鉴定与StGAI基因克隆及其遗传转化. 甘肃农业大学硕士学位论文,甘肃兰州, 2019.
Wang S L. Identification of StGRAS Gene Family and Cloning of StGAI Gene and Its Genetic Transformation in Potato. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2019 (in Chinese with English abstract).
[10] Thieulin P G, Avilan L, Kojadinovic M, Gontero B. Fairy tails: flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci, 2015,2:23, doi: 10.3389/fmolb.2015.00023.
pmid: 26042223
[11] Guo Y Y, Wu H Y, Li X, Li Q, Zhao X Y, Duan X Q, An Y R, Lyu W, An H L. Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS One, 2017,12:e0185418.
[12] Liu M Y, Huang L, Ma Z T, Sun W T, Wu Q, Tang Z Z, Bu T L, Li C L, Chen H. Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol, 2019,19:342, doi: 10.1186/s12870-019-1951-3.
pmid: 31387526
[13] Zeng X, Ling H, Chen X M, Guo S X. Genome-wide identification, phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae). Gene, 2019,705:5-15.
doi: 10.1016/j.gene.2019.04.038 pmid: 30999026
[14] Lu J X, Wang T, Xu Z D, Sun L D, Zhang Q X. Genome-wide analysis of the GRAS gene family in Prunus mume. Mol Genet Genomics, 2015,1:303-317.
[15] Jia Y B, Tian H Y, Li H J, Yu Q Q, Wang L, Friml J, Ding Z J. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. J Exp Bot, 2015,66:4631-4642.
pmid: 25998905
[16] Tania H P, Nuria M R, David F F, Miriam V D, José M G G. Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Front Plant Sci, 2019,10:268, doi: 10.3389/fpls.2019.00268.
[17] Xu W, Chen Z X, Ahmed N, Han B, Cui Q H, Liu A Z. Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in castor beans. Int J Mol Sci, 2016,17:1004, doi: 10.3390/ijms17071004.
[18] Xie J, Liao H X, Wang X W, Zhang X B, Ni J L, Li Y Y, Tian W J, Sang X C. DLT/OsGRAS-32, regulating leaf width and thickness by controlling cell number in Oryza sativa. Mol Breed, 2019,39:1-11.
[19] Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep, 2016,35:655-666.
[20] Chen Y Q, Tai S S, Wang D W, Ding A M, Sun T T, Wang W F, Sun Y H. Homology-based analysis of the GRAS gene family in tobacco. Genet Mol Res, 2015,14:188-200.
[21] Shan Z Y, Luo X L, Wu M Y, Wei L M, Fan Z P, Zhu Y M. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol, 2020, 20: 46, 10.1186/ s12870-020-2242-8.
[22] Zhang B, Liu J, Yang Z E, Chen E Y, Zhang C J, Zhang X Y, Li F G. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. BMC Genomics, 2018,19:348, doi: 10.1186/s12864-018-4722-x.
doi: 10.1186/s12864-018-4722-x pmid: 29743013
[23] 许艳萍, 吕品, 张庆滢, 郭蓉, 邓纲, 郭鸿彦, 杨明. 不同工业大麻品种对田间5种重金属吸收积累特性的比较. 农业资源与环境学报, 2020,37:106-114.
Xu Y P, Lyu P, Zhang Q Y, Guo R, Deng G, Guo H Y, Yang M. Comparison of the absorption and accumulation characteristics of five heavy metals among different industrial hemp varieties. J Agric Resour Environ, 2020,37:106-114 (in Chinese with English abstract).
[24] Husain R, Weeden H, Bogush D, Deguchi M, Soliman M, Potlakayala S, Katam R, Goldman S, Rudrabhatla S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS One, 2019,14:e0221570.
pmid: 31465423
[25] 殷龙飞, 王朝阳, 吴忠义, 张中保, 于荣. 玉米ZmGRAS31基因的克隆及功能研究. 作物学报, 2019,45:1029-1037.
Yin L F, Wang Z Y, Wu Z Y, Zhang Z B, Yu R. Cloning and functional analysis of ZmGRAS31 gene in maize. Acta Agron Sin, 2019,45:1029-1037 (in Chinese with English abstract).
[26] Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep, 2016,35:655-666.
[27] 董丽莉, 赵韩生, 李利超, 孙化雨, 王丽丽, 高志民. 毛竹PeSCL3基因表达特征及其启动子活性研究. 热带亚热带植物学报, 2016,24:252-258.
Dong L L, Zhao H S, Li L C, Sun H Y, Wang L L, Gao Z M. Expression characteristics and promoter activity analysis of PeSCL3 gene from Phyllostachys edulis. J Trop Subtrop Bot, 2016,24:252-258 (in Chinese with English abstract).
[28] Laverty K U, Stout J M, Sullivan M J, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes T R, Page JT E, van Bakel H. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res, 2019,29:146-156.
[29] Peng H, He X J, Gao J, Ma H X, Zhang Z M, Shen Y O, Pan G T, Lin H J. Transcriptomic changes during maize roots development responsive to cadmium (Cd) pollution using comparative RNAseq-based approach. Biochem Biophys Res Commun, 2015,464:1040-1047.
[30] Liu X Y, Widmer A. Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice. Plant Mol Biol Rep, 2014,32:1129-1145.
[31] Liu C Y, Xie T, Chen C J, Luan A P, Long J M, Li C H, Ding Y Q, He Y H. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics, 2017,18:503, doi: 10.1186/s12864- 017-3896-y.
pmid: 28668094
[32] 黄玉敏. 不同工业大麻品种耐镉性及原花青素缓解镉胁迫功能分析. 中国农业科学院研究生院硕士学位论文,北京, 2019.
Huang Y M. Cadmium Tolerance in Different Hemp Varieties and Analysis of Proanthocyanins in Relieving Cadmium Stress. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing,China, 2019 (in Chinese with English abstract).
[33] Xie T, Chen C J, Li C H, Liu J R, Liu C Y, He Y H. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics, 2018,19:490, doi: 10.1186/s12864-018-4880-x.
[34] Vannozzi A, Wong D C J, Höll J, Hmmam I, Matus J T, Bogs J, Ziegler T, Dry I, Barcaccia G, Lucchin M. Combinatorial regulation of stilbene synthase genes by WRKY and MYB transcription factors in grapevine (Vitis vinifera L.). Plant Cell Physiol, 2018,59:1043-1059.
pmid: 29529275
[35] Die J V, Román B, Qi X P, Rowland L J. Genome-scale examination of NBS-encoding genes in blueberry. Sci Rep, 2018,8:3429, doi: 10.1038/s41598-018-21738-7.
[36] 孔豆豆, 毛成志, 王蕾, 王寒冬, 张怀刚, 徐金青, 沈裕虎. 大麦基因组GRAS基因家族的全基因组鉴定与表达分析. 分子植物育种, 2019,22:1-23.
Kong D D, Mao C Z, Wang L, Wang H D, Zhang H G, Xu J Q, Shen Y H. Genome-wide identification and phylogenetic analysis of the GRAS gene family in barley (Hordeum vulgare L.). Mol Plant Breed, 2019,22:1-23 (in Chinese with English abstract).
[37] 魏斐. 全基因组鉴定甘蓝型油菜GRAS基因家族. 郑州大学硕士学位论文,河南郑州, 2018.
Wei F. Genome-wide Identification GRAS Gene Family in Brassica napus. MS Thesis of Zhengzhou University, Zhengzhou, Henan,China, 2018 (in Chinese with English abstract).
[38] Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA, 2001,98:14162-14167.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[6] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[7] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[8] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[9] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[10] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[11] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[12] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[13] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[14] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[15] 许艳萍, 杨明, 郭鸿彦, 杨清辉. 5个工业大麻品种对5种重金属污染土壤的修复潜力[J]. 作物学报, 2020, 46(12): 1970-1978.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!