欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1070-1081.doi: 10.3724/SP.J.1006.2021.04133

• 专题:主要麻类作物基因组学与遗传改良 • 上一篇    下一篇

亚麻响应低钾胁迫转录谱分析

黄文功1(), 姜卫东1, 姚玉波1, 宋喜霞1, 刘岩1, 陈思1, 赵东升1, 吴广文1, 袁红梅1, 任传英2, 孙中义3, 吴建忠4, 康庆华1,*()   

  1. 1黑龙江省农业科学院经济作物研究所, 黑龙江哈尔滨 150086
    2黑龙江省农业科学院食品加工研究所, 黑龙江哈尔滨 150086
    3黑龙江省农业科学院畜牧研究所, 黑龙江哈尔滨 150086
    4黑龙江省农业科学院草业研究所, 黑龙江哈尔滨 150086
  • 收稿日期:2020-06-22 接受日期:2020-11-13 出版日期:2021-06-12 网络出版日期:2020-12-15
  • 通讯作者: 康庆华
  • 作者简介:E-mail: huangwengong1736@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0201100);黑龙江省现代农业产业技术协同创新体系麻类药用资源遗传改良与创新利用协同创新岗(YYM19SQ-24);国家现代农业产业技术体系建设专项(CARS-16-E04);黑龙江省农业科学院科技创新工程专项(2019JCQN003);黑龙江省农业科学院科技创新工程专项(HNK2019CX08-05)

Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress

HUANG Wen-Gong1(), JIANG Wei-Dong1, YAO Yu-Bo1, SONG Xi-Xia1, LIU Yan1, CHEN Si1, ZHAO Dong-Sheng1, WU Guang-Wen1, YUAN Hong-Mei1, REN Chuan-Ying2, SUN Zhong-Yi3, WU Jian-Zhong4, KANG Qing-Hua1,*()   

  1. 1Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    3Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    4Institute of Forage and Grassland Science, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2020-06-22 Accepted:2020-11-13 Published:2021-06-12 Published online:2020-12-15
  • Contact: KANG Qing-Hua
  • Supported by:
    The National Key Research and Development Program of China(2018YFD0201100);The Heilongjiang Province Modern Agricultural Industry Technology Collaborative Innovation System-Hemp (medicinal) Resources Genetic Improvement and Innovative Utilization Collaborative Innovation Post(YYM19SQ-24);The China Agriculture Research System(CARS-16-E04);The Science and Technology Innovation Project of Heilongjiang Academy of Agricultural Sciences(2019JCQN003);The Science and Technology Innovation Project of Heilongjiang Academy of Agricultural Sciences(HNK2019CX08-05)

摘要:

钾是亚麻生长发育必需的大量元素。本研究以钾高效利用亚麻品种Sofie为试验材料, 在低钾处理12 h和96 h下, 利用转录组测序及qRT-PCR进行低钾胁迫下差异基因表达调控的研究。结果表明, 低钾处理7 d的亚麻叶片边缘变黄, 与对照相比, 低钾处理植株矮化。筛选出对低钾响应强烈的3个钾运转蛋白基因LusKC1 (Lus K channel 1)、LusSKOR (Lus STELAR K + outward rectifier)和LusHAK5 (Lus high affinity K + transporter 5), 低钾胁迫响应峰值时间为12 h和96 h; 与对照相比, 低钾处理12 h鉴定到差异表达基因1154个(508个上调, 646个下调), GO功能富集分析表明, 这些差异表达基因主要富集于代谢过程、细胞进程、单一生物过程、催化活性和结合功能五大类, KEGG通路富集分析表明, 这些差异表达基因涉及到能量代谢、碳水化合物代谢、碳代谢、氨基酸代谢、萜类化合物代谢和植物激素信号转导等通路。进而筛选出7个与钾直接相关基因(4个钾运输蛋白、2个钾通道蛋白及1个钠钾钙交换蛋白)、13个与激素相关基因以及6个与纤维素合成相关基因。7个与钾直接相关基因中, 2个基因表达量上调1.75倍和2.64倍, 5个基因表达量下调1.21~9.57倍。以上解析的差异基因初步揭示了亚麻低钾涉及的转录调控途径, 可为亚麻耐低钾相关基因的克隆与功能验证奠定基础。

关键词: 亚麻, 低钾, 转录组, 差异表达基因

Abstract:

Potassium (K) is an essential element for the growth and development in flax. Transcriptome sequencing and qRT-PCR were used to investigate the regulation of differential gene expression after 12 h and 96 h of low-K + treatment. The results showed that the leaf edge of flax treated with low-K + for 7 days turned yellow, and the plants were dwarfed compared with the control. LusKC1 (Lus K channel 1), LusSKOR (Lus STELAR K + outward rectifier) and LusHAK5 (Lus high affinity K + transporter 5) were detected to respond to low-K + with response peak time of 12 h and 96 h. Compared with the control, 1154 differentially expressed genes (DEGs) (508 up-regulated and 646 down-regulated genes) were identified in low-K + treatment for 12 h. GO enrichment showed that DEGs were mainly concentrated on five categories: metabolic process, cellular process, single biological process, catalytic activity and binding function. KEGG pathway enrichment showed that DEGs involved in energy metabolism, carbohydrate metabolism, carbon metabolism, amino acid metabolism, terpenoid metabolism and plant hormone signal transduction pathways. Furthermore, 7 genes directly related to K (4K transporters, 2K channel proteins and 1 sodium-potassium-calcium exchanger protein), 13 genes related to hormone and 6 genes related to cellulose synthesis were screened. Among the 7 genes directly related to K, the relative expression of 2 genes were up-regulated by 1.75 and 2.64 times and 5 genes down-regulated by 1.21-9.57 times. In summary, DEGs preliminarily revealed the transcriptional regulation pathway involved in low-K + in flax, which laid a foundation for cloning and functional verification of flax low-K + tolerance related genes.

Key words: flax, low potassium, transcriptome profiling, differentially expressed genes

表1

本研究用于qRT-PCR的引物"

引物名称
Primers
正向引物
Forward primers (5'-3')
反向引物
Reverse primers (5'-3')
LusKC1-1 CATTGTCCTCACTTTCTTTGTCGC CGAACCATGGCTTAGTGAGATACC
LusKC1-2 CATTGTCCTCACTTTCTTTGTCGC TAGATGAACTGAAACGGTAGGGTG
LusKC1-3 CGACTTGGCGGTGGATGCTT TAGATGAACTGAAACGGTAGGGTG
LusSKOR-1 GTCTCGTCATTCATCCCGACAACA CCAACAATGTCCAAAATGAAGAGAT
LusSKOR-2 GTCTCGTCATTCATCCCGACAACA TAATCCCCTGAAGAATCCAAACTCC
LusSKOR-3 TTCCATCACGTCTCCACCGGT TAATCCCCTGAAGAATCCAAACTCC
LusAKT2-1 TTCATAAACGGAGGTCATCTCTTCT GACAATCTCAGCAGCATAAAGCCTC
LusAKT2-2 TTCATAAACGGAGGTCATCTCTTCT TCAGGCTTAAGATCTCGATGCACAA
LusAKT2-3 GTCATCCATCCTTTCATCGTCCAGC GACAATCTCAGCAGCATAAAGCCTC
LusHAK5-1 GTTTCCAAGACAACACAAGGCG GATGTTCCGATGTCGCCGTA
LusHAK5-2 GTTTCCAAGACAACACAAGGCG ATGTCGCCGTAGACCACTCCA
LusHAK5-3 CCAAGACAACACAAGGCGGC GATGTTCCGATGTCGCCGTA
LusKUP2-1 TGTTCAAGTATGTGTTCATTGTTCT GGACAATGATTCATCTGAGACCTGC
LusKUP2-2 TGTTCAAGTATGTGTTCATTGTTCT TGATTCATCTGAGACCTGC
LusKUP2-3 GCTGATGACAATGGAGAGGGT GCAAACAAGGCTACCAGTATGAT
LusKUP3-1 CACCCCTGCCCTTTCTGTTT TAGATGAACTGAAACGGTAGGGTG
LusKUP3-2 CACCCCTGCCCTTTCTGTTT TATGATGCATGTAGCTGGGAGT
LusKUP3-3 CTTGCTGGTTTTGGCGTT GCAAACAAGGCTACCAGTATGAT
LusKUP12-1 TGGTGGGACTATGAGGAGGAG CCATGTCGCCATAGACCACT
LusKUP12-2 TGGTGGGACTATGAGGAGGAG ACTCCAAGCGTTTGAAAGGC
LusKUP12-3 AGGAGGAGGTTGGTGAAGAAG CCATGTCGCCATAGACCACT
LusKEA5-1 ATGAGAAGGGCAAGAAAAATGA GACGTTATCCTTTTTGTCAATGA
LusKEA5-2 ATGAGAAGGGCAAGAAAAATGA CAGCACAGGATATTTAGATTTCTTG
LusKEA5-3 AGGGCAAGAAAAATGACACACA GACGTTATCCTTTTTGTCAATGA
LusCHX17-1 CTCACTCGCATCCTCGCTTT ACTGTGAGAGACTTATGTGGGAA
LusCHX17-2 CTCACTCGCATCCTCGCTTT TATGTGGGAAGATAGTGTTGAGG
LusCHX17-3 ATCCTCGCTTTCCTCCTC ACTGTGAGAGACTTATGTGGGAA
LusEF1A GCTGCCAACTTCACATCTCA GATCGCCTGTCAATCTTGGT
LusUBI CCTCCTTGATAGCAGCCTTG CTCCGTGGAGGTATGCAGAT
LusTUA CCTGTTGGGAGCTTTACTGC AAGGTGTTGAAGGCATCGTC
LusEF2 GTGGTGCTGAGATCACGAAA AGACGGTTATGCTTGTTGGG
LusActin GGTGTTATGGTTGGAATGGGTC CCTCAGTGAGAAGTACAGGGTG

图1

亚麻低钾处理前后植株表型 A: 蛭石中生长; B: 处理前的植株表型; C: 低钾胁迫对照和处理的生长状态; D: 处理后低钾和对照的植株表型; E: 处理后低钾和对照的单株表型。a: 低钾胁迫的植株表型; b: 对照的植株表型。"

图2

亚麻低钾胁迫标记基因筛选"

图3

亚麻低钾不同时间点对LusKCL、LusSKOR和LusHAK5表达的影响 同一基因中不同小写字母分别表示在0.05水平差异显著。"

表2

亚麻12个转录组数据的主要特性"

样品
Sample
总的原始读数
Total raw reads (Mb)
总的过滤读数
Total clean reads (b)
比对读数
Compared reads
比对特异性
Compared specificity (%)
比对基因Compared genes
12h-CK-1 38.07 36,976,258 32,381,211 87.57% 82.01 35,281
12h-CK-2 38.07 36,547,552 31,737,232 86.84% 81.82 34,782
12h-CK-3 38.07 36,309,778 31,468,060 86.67% 80.67 35,320
12h-KS-1 38.07 36,507,590 32,071,565 87.85% 83.38 35,352
12h-KS-2 38.07 36,763,226 32,059,054 87.20% 81.62 35,351
12h-KS-3 38.07 36,513,816 31,749,080 86.95% 81.41 35,429
96h-CK-1 38.07 36,886,386 32,109,249 87.05% 81.79 35,608
96h-CK-2 38.07 36,515,094 31,576,196 86.47% 81.72 35,270
96h-CK-3 38.07 36,494,576 31,449,058 86.17% 81.15 35,260
96h-KS-1 38.07 36,956,330 32,146,308 86.98% 81.33 35,807
96h-KS-2 38.07 36,737,316 32,133,744 87.47% 82.20 36,263
96h-KS-3 38.07 36,409,348 31,493,300 86.50% 81.31 35,141

图4

亚麻低钾响应差异表达基因的维恩图 A: 亚麻低钾处理后12 h和96 h差异基因数; B: 低钾对照组和处理组差异基因数。"

图5

亚麻低钾12 h差异表达基因的GO富集"

图6

亚麻低钾12 h差异表达基因的KEGG通路富集"

表3

亚麻低钾下7个与钾直接相关基因筛选"

基因收录号
Gene ID
基因名称
Gene name
KS/CK的log2
log2 FC
注释
Annotation
MSTRG.20565.1 Potassium transporter 5-like 2.64 钾转运蛋白Potassium transporter
MSTRG.24915.2 Potassium transporter, putative -1.21 钾转运蛋白Potassium transporter
MSTRG.10817.1 Hypothetical protein EUGRSUZ_E04300 -1.23 钾转运蛋白Potassium transporter
MSTRG.6817.1 Potassium transporter 7-like -9.57 钾转运蛋白Potassium transporter
MSTRG.4695.1 Uncharacterized protein isoform 2 1.75 钾电压通道Potassium voltage-gated channel
MSTRG.30540.1 Potassium channel SKOR-like isoform X1 -1.40 钾通道Potassium channel
MSTRG.14498.2 Nucleolar protein nop56, putative -3.01 钠钾钙交换器Sodium potassium calcium exchanger

附图1

亚麻低钾胁迫的信号转导和离子转运体调控通路[22] a: 低钾胁迫处理的植株表型; b: 对照的植株表型。植物能感知外界低K+胁迫, 并在植物细胞中产生低K+信号。信号(Ca2+、ROS等)可在细胞溶质中转导, 最终在转录和翻译后水平调节下游靶点(尤其是K+通道和转运体)。“P”表示磷酸化, “X”表示抑制作用。"

表4

亚麻低钾下13个与激素相关基因筛选"

激素种类
Hormone kinds
基因登录号
Gene ID
基因名称
Gene name
KS/CK的log2
log2 FC
注释
Annotation
Auxin MSTRG.4702.1 AUX -1.44 生长素诱导蛋白Auxin-induced protein
MSTRG.13772.1 AUX -1.51 生长素诱导蛋白Auxin-induced protein
MSTRG.7397.8 TIR 8.52 Toll/interleukin-1受体Toll/interleukin-1 receptor
MSTRG.6782.4 ARF 9.62 含家族蛋白的ARF-GTPase激活域
ARF GTPase-activating domain-containing family protein
MSTRG.29326.1 GH3 -3.02 吲哚-3-乙酸酰胺合成酶GH3
Indole-3-acetic acid-amido synthetase GH3
MSTRG.14003.4 GH3 -3.58 吲哚-3-乙酸酰胺合成酶GH3
Indole-3-acetic acid-amido synthetase GH3
Cytokinine MSTRG.25736.1 AHP1 -1.81 含组氨酸磷酸转移蛋白1
Histidine-containing phosphotransfer protein 1
Ethylene MSTRG.16160.5 CTR1 -6.23 丝氨酸/苏氨酸蛋白激酶CTR1亚型X1
Serine/threonine-protein kinase CTR1 isoform X1
MSTRG.19624.1 CTR1 -1.90 丝氨酸/苏氨酸蛋白激酶CTR1亚型X1
Serine/threonine-protein kinase CTR1 isoform X1
MSTRG.15232.4 CTR1 -7.72 丝氨酸/苏氨酸蛋白激酶CTR1亚型X1
Serine/threonine-protein kinase CTR1 isoform X1
MSTRG.36331.6 EIN2 -10.02 假定蛋白Hypothetical protein
MSTRG.40444.1 EBF1 -1.20 假定蛋白Hypothetical protein
MSTRG.12066.1 EBF1 -3.10 假定蛋白Hypothetical protein

附图2

亚麻低钾下生长素、细胞分裂素和乙烯合成通路相关基因[23] a: 低钾胁迫处理的植株表型; b: 对照的植株表型。矩形框为参与这些途径的蛋白质。蛋白质-蛋白质相互作用用箭头表示。箭头表示激活, 短横线表示抑制, 交叉线表示解离, 直虚线箭头表示间接作用, +u表示泛素化。"

表5

亚麻低钾下6个与纤维素相关基因筛选"

基因收录号
Gene ID
基因名称
Gene name
KS/CK的log2
log2 FC
注释
Annotation
MSTRG.20574.4 Exo70 -8.70 胞外复合蛋白Exocyst complex protein
MSTRG.29262.1 Exo70 -2.13 胞外复合蛋白Exocyst complex protein
MSTRG.16464.2 COB23 -2.03 外被体亚单位Coatomer beta subunit
MSTRG.16464.1 COB23 -1.73 外被体亚单位Coatomer beta subunit
MSTRG.18050.1 COB21 -1.94 外被体亚单位Coatomer beta subunit
MSTRG.5636.3 FEI1 -1.86 双特异性蛋白激酶Dual specificity protein kinase

附图3

亚麻低钾下纤维素合成通路相关基因[24]"

图7

RNA-Seq和qRT-PCR相关性"

[1] 中国农业科学院土壤肥料研究所. 中国化肥区划. 北京: 中国农业科技出版社, 1986. pp 13-15.
Institute of Soil and Fertilizer, Chinese Academy of Agricultural Sciences. Fertilizer Regionalization in China. Beijing: China Agricultural Science and Technology Press, 1986. pp 13-15(in Chinese).
[2] 国家统计局农村社会经济调查司. 中国农村统计年鉴. 北京: 中国统计出版社, 2012. pp 270-271.
Department of Rural Social and Economic Investigation, National Bureau of Statistics. China Rural Statistical Yearbook. Beijing: China Statistics Press, 2012. pp 270-271(in Chinese).
[3] 亓昭英, 屈小荣, 马锁立, 商立鹏. 2018年我国钾肥行业运行报告及发展预测. 磷肥与复肥, 2019,34(2):1-4.
Qi S Y, Qu X R, Ma S L, Shang L P. Operation report and development prediction of Chinese potassium fertilizer industry in 2018. Phosphate Fert Comp Fert, 2019,34(2):1-4 (in Chinese with English abstract).
[4] 刘国栋, 刘更另. 籼稻耐低钾基因型的筛选. 作物学报, 2002,28:161-166.
Liu G D, Liu G L. Screening of low potassium tolerance genotypes in indica rice. Acta Agron Sin, 2002,28:161-166 (in Chinese with English abstract).
[5] Wang Y, He L, Li H D, Xu J, Wu W H. Potassium channel a-subunit At KC1 negatively regulates AKT1-mediated K + uptake in Arabidopsis roots under low-K + stress . Cell Res, 2010,20:826-837.
[6] Schachtman D P, Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007,58:47-69.
[7] Leigh R A, Wyn Jones R G. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol, 1984,97:1-13.
[8] Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Ann Rev Plant Physiol, 1980,31:239-298.
[9] Lester G E. Whole plant applied potassium: effects on cantaloupe fruit sugar content and related human wellness compounds. Acta Hortic, 2005,682:487-492.
[10] Rubio F, Santa M G E, Rodríguez N A. Cloning of Arabidopsis, and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant, 2010,109:34-43.
[11] Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez N A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002,130:784-795.
[12] Wang Y H, Garvin D F, Kochian L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol, 2002,130:1361-1370.
[13] Voelker C, Schmidt D, Czempinski K, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J, 2006,48:296.
[14] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681.
[15] Xu J, Li H D, Chen L Q, Wang Y, Liu L L. A protein kinase, interacting with two calcineurin B-like proteins, regulates K + transporter AKT1 in Arabidopsis . Cell, 2006,125:1347-1360.
[16] Lan W Z, Lee S C, Che Y F, Jiang Y Q, Luan S. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Mol Plant, 2011,4:527-536.
[17] Mao J, Nuruzzaman M S M, Shi S, Chao J T, Jin Y R, Wang Q, Liu H B. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016,7:62.
[18] Munson R D. Potassium in Agriculture. Madison: ASA/CSSA/SSSA. 1985. pp 754-794.
[19] Wang Z W, Hobson N, Galindo L, Zhu S L, Shi D H, McDill J, Yang L F, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A G, Wong G K, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J, 2012,72:461-473.
[20] Wu J Z, Zhao Q, Zhang L Y, Ma Y H, Pan L Y, Lin H, Wu G W, Yuan H M, Yu Y, Wang X, Yang X, Li Z G, Jiang T B, Sun D Q. QTL Mapping of fiber-related traits based on a high-density genetic map in flax (Linum usitatissimum L.). Front Plant Sci, 2018,9:885-894.
[21] Huang W G, Zhang S Q, Wu G W, Yu Y, Ren C Y, Kang Q H, Liu Y, Liang C B, Zhang L G, Zhan Y G. Transcriptome profiling of potassium starvation responsiveness in flax (Linum usitatissimum L.). Pak J Bot, 2019,51:865-878.
[22] Wang Y, Wu W H. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol, 2017,39:123-128.
[23] Ruben P F, Manuel B. A review of the effects of soil organisms on plant hormone signalling pathways. Environ Exp Bot, 2015,114:104-116.
[24] Joanna K P, Joseph J K. The regulation of cellulose biosynthesis in plants. Plant Cell, 2019,31:282-296.
pmid: 30647077
[25] Armengaud P, Breitling R, Amtmann A. The potassium- dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol, 2004,136:2556-2576.
[26] Cakmak I, Hengeler C, Marschner H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot, 1994,45:1245-1250.
[27] Jung J Y, Shin R, Schachtman D P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell, 2009,21:607-621.
pmid: 19190240
[28] Fan M L, Huang Y, Zhong Y Q, Kong Q S, Xie J J, Niu M L, Xu Y, Bie Z L. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta, 2014,239:397-410.
doi: 10.1007/s00425-013-1976-z pmid: 24185372
[29] Wang X P, Chen L M, Liu W X. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low-potassium stress responses in Arabidopsis. Plant Physiol, 2016,170:2264-2277.
[30] Ahmad I, Mian A, Maathuis F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot, 2016,67:2689-2698.
[31] Zhang H, Yin W, Xia X. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K + stress . Plant Cell Rep, 2010,29:1007-1012.
[32] Zhao S, Zhang M L, Ma T L. Phosphorylation of ARF2 relieves its repression of transcription of the K + transporter gene HAK5 in response to low potassium stress . Plant Cell, 2016,28:3005-3019.
pmid: 27895227
[33] Drechsler N, Zheng Y, Bohner A, Nobmann B, Wirén N, Kunze R, Rausch C. Nitrate-dependent control of shoot K homeostasis by NPF7.3/NRT1.5 and SKOR in Arabidopsis. Plant Physiol, 2015,169:2832-2847.
pmid: 26508776
[34] Li W, Ma M, Feng Y, Li H J, Wang Y C, Ma Y T, Li M Z, An F Y, Guo H W. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell, 2015,163:670-683.
[35] Wang S, Bai Y, Shen C, Wu Y R, Zhang S N. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics, 2010,10:533-546.
pmid: 20499123
[36] Milborrow B V, Burden R S, Taylor H F. The conversion of 2-cis-[14C] Xanthoxic acid into [14C] ABA . Phytochem Anal, 1997,45:257-260.
[37] Muday G K, Rahman A, Binder B M. Auxin and ethylene: collaborators or competitors? Trends Plant Sci, 2012,17:181-195.
pmid: 22406007
[38] Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005,46:1350-1357.
[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[3] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[4] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[5] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[6] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[7] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[8] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[9] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[10] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[11] 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996.
[12] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[13] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[14] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
[15] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!