作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1070-1081.doi: 10.3724/SP.J.1006.2021.04133
• 专题:主要麻类作物基因组学与遗传改良 • 上一篇 下一篇
黄文功1(), 姜卫东1, 姚玉波1, 宋喜霞1, 刘岩1, 陈思1, 赵东升1, 吴广文1, 袁红梅1, 任传英2, 孙中义3, 吴建忠4, 康庆华1,*()
HUANG Wen-Gong1(), JIANG Wei-Dong1, YAO Yu-Bo1, SONG Xi-Xia1, LIU Yan1, CHEN Si1, ZHAO Dong-Sheng1, WU Guang-Wen1, YUAN Hong-Mei1, REN Chuan-Ying2, SUN Zhong-Yi3, WU Jian-Zhong4, KANG Qing-Hua1,*()
摘要:
钾是亚麻生长发育必需的大量元素。本研究以钾高效利用亚麻品种Sofie为试验材料, 在低钾处理12 h和96 h下, 利用转录组测序及qRT-PCR进行低钾胁迫下差异基因表达调控的研究。结果表明, 低钾处理7 d的亚麻叶片边缘变黄, 与对照相比, 低钾处理植株矮化。筛选出对低钾响应强烈的3个钾运转蛋白基因LusKC1 (Lus K channel 1)、LusSKOR (Lus STELAR K + outward rectifier)和LusHAK5 (Lus high affinity K + transporter 5), 低钾胁迫响应峰值时间为12 h和96 h; 与对照相比, 低钾处理12 h鉴定到差异表达基因1154个(508个上调, 646个下调), GO功能富集分析表明, 这些差异表达基因主要富集于代谢过程、细胞进程、单一生物过程、催化活性和结合功能五大类, KEGG通路富集分析表明, 这些差异表达基因涉及到能量代谢、碳水化合物代谢、碳代谢、氨基酸代谢、萜类化合物代谢和植物激素信号转导等通路。进而筛选出7个与钾直接相关基因(4个钾运输蛋白、2个钾通道蛋白及1个钠钾钙交换蛋白)、13个与激素相关基因以及6个与纤维素合成相关基因。7个与钾直接相关基因中, 2个基因表达量上调1.75倍和2.64倍, 5个基因表达量下调1.21~9.57倍。以上解析的差异基因初步揭示了亚麻低钾涉及的转录调控途径, 可为亚麻耐低钾相关基因的克隆与功能验证奠定基础。
[1] | 中国农业科学院土壤肥料研究所. 中国化肥区划. 北京: 中国农业科技出版社, 1986. pp 13-15. |
Institute of Soil and Fertilizer, Chinese Academy of Agricultural Sciences. Fertilizer Regionalization in China. Beijing: China Agricultural Science and Technology Press, 1986. pp 13-15(in Chinese). | |
[2] | 国家统计局农村社会经济调查司. 中国农村统计年鉴. 北京: 中国统计出版社, 2012. pp 270-271. |
Department of Rural Social and Economic Investigation, National Bureau of Statistics. China Rural Statistical Yearbook. Beijing: China Statistics Press, 2012. pp 270-271(in Chinese). | |
[3] | 亓昭英, 屈小荣, 马锁立, 商立鹏. 2018年我国钾肥行业运行报告及发展预测. 磷肥与复肥, 2019,34(2):1-4. |
Qi S Y, Qu X R, Ma S L, Shang L P. Operation report and development prediction of Chinese potassium fertilizer industry in 2018. Phosphate Fert Comp Fert, 2019,34(2):1-4 (in Chinese with English abstract). | |
[4] | 刘国栋, 刘更另. 籼稻耐低钾基因型的筛选. 作物学报, 2002,28:161-166. |
Liu G D, Liu G L. Screening of low potassium tolerance genotypes in indica rice. Acta Agron Sin, 2002,28:161-166 (in Chinese with English abstract). | |
[5] | Wang Y, He L, Li H D, Xu J, Wu W H. Potassium channel a-subunit At KC1 negatively regulates AKT1-mediated K + uptake in Arabidopsis roots under low-K + stress . Cell Res, 2010,20:826-837. |
[6] | Schachtman D P, Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007,58:47-69. |
[7] | Leigh R A, Wyn Jones R G. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol, 1984,97:1-13. |
[8] | Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Ann Rev Plant Physiol, 1980,31:239-298. |
[9] | Lester G E. Whole plant applied potassium: effects on cantaloupe fruit sugar content and related human wellness compounds. Acta Hortic, 2005,682:487-492. |
[10] | Rubio F, Santa M G E, Rodríguez N A. Cloning of Arabidopsis, and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant, 2010,109:34-43. |
[11] | Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez N A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002,130:784-795. |
[12] | Wang Y H, Garvin D F, Kochian L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol, 2002,130:1361-1370. |
[13] | Voelker C, Schmidt D, Czempinski K, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J, 2006,48:296. |
[14] | Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681. |
[15] | Xu J, Li H D, Chen L Q, Wang Y, Liu L L. A protein kinase, interacting with two calcineurin B-like proteins, regulates K + transporter AKT1 in Arabidopsis . Cell, 2006,125:1347-1360. |
[16] | Lan W Z, Lee S C, Che Y F, Jiang Y Q, Luan S. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Mol Plant, 2011,4:527-536. |
[17] | Mao J, Nuruzzaman M S M, Shi S, Chao J T, Jin Y R, Wang Q, Liu H B. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016,7:62. |
[18] | Munson R D. Potassium in Agriculture. Madison: ASA/CSSA/SSSA. 1985. pp 754-794. |
[19] | Wang Z W, Hobson N, Galindo L, Zhu S L, Shi D H, McDill J, Yang L F, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A G, Wong G K, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J, 2012,72:461-473. |
[20] | Wu J Z, Zhao Q, Zhang L Y, Ma Y H, Pan L Y, Lin H, Wu G W, Yuan H M, Yu Y, Wang X, Yang X, Li Z G, Jiang T B, Sun D Q. QTL Mapping of fiber-related traits based on a high-density genetic map in flax (Linum usitatissimum L.). Front Plant Sci, 2018,9:885-894. |
[21] | Huang W G, Zhang S Q, Wu G W, Yu Y, Ren C Y, Kang Q H, Liu Y, Liang C B, Zhang L G, Zhan Y G. Transcriptome profiling of potassium starvation responsiveness in flax (Linum usitatissimum L.). Pak J Bot, 2019,51:865-878. |
[22] | Wang Y, Wu W H. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol, 2017,39:123-128. |
[23] | Ruben P F, Manuel B. A review of the effects of soil organisms on plant hormone signalling pathways. Environ Exp Bot, 2015,114:104-116. |
[24] |
Joanna K P, Joseph J K. The regulation of cellulose biosynthesis in plants. Plant Cell, 2019,31:282-296.
pmid: 30647077 |
[25] | Armengaud P, Breitling R, Amtmann A. The potassium- dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol, 2004,136:2556-2576. |
[26] | Cakmak I, Hengeler C, Marschner H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot, 1994,45:1245-1250. |
[27] |
Jung J Y, Shin R, Schachtman D P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell, 2009,21:607-621.
pmid: 19190240 |
[28] |
Fan M L, Huang Y, Zhong Y Q, Kong Q S, Xie J J, Niu M L, Xu Y, Bie Z L. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta, 2014,239:397-410.
doi: 10.1007/s00425-013-1976-z pmid: 24185372 |
[29] | Wang X P, Chen L M, Liu W X. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low-potassium stress responses in Arabidopsis. Plant Physiol, 2016,170:2264-2277. |
[30] | Ahmad I, Mian A, Maathuis F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot, 2016,67:2689-2698. |
[31] | Zhang H, Yin W, Xia X. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K + stress . Plant Cell Rep, 2010,29:1007-1012. |
[32] |
Zhao S, Zhang M L, Ma T L. Phosphorylation of ARF2 relieves its repression of transcription of the K + transporter gene HAK5 in response to low potassium stress . Plant Cell, 2016,28:3005-3019.
pmid: 27895227 |
[33] |
Drechsler N, Zheng Y, Bohner A, Nobmann B, Wirén N, Kunze R, Rausch C. Nitrate-dependent control of shoot K homeostasis by NPF7.3/NRT1.5 and SKOR in Arabidopsis. Plant Physiol, 2015,169:2832-2847.
pmid: 26508776 |
[34] | Li W, Ma M, Feng Y, Li H J, Wang Y C, Ma Y T, Li M Z, An F Y, Guo H W. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell, 2015,163:670-683. |
[35] |
Wang S, Bai Y, Shen C, Wu Y R, Zhang S N. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics, 2010,10:533-546.
pmid: 20499123 |
[36] | Milborrow B V, Burden R S, Taylor H F. The conversion of 2-cis-[14C] Xanthoxic acid into [14C] ABA . Phytochem Anal, 1997,45:257-260. |
[37] |
Muday G K, Rahman A, Binder B M. Auxin and ethylene: collaborators or competitors? Trends Plant Sci, 2012,17:181-195.
pmid: 22406007 |
[38] | Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005,46:1350-1357. |
[1] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[2] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[3] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[4] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[5] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[6] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[7] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[8] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
[9] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[10] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[11] | 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996. |
[12] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
[13] | 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660. |
[14] | 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394. |
[15] | 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340. |
|