欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1082-1089.doi: 10.3724/SP.J.1006.2021.04116

• 专题:主要麻类作物基因组学与遗传改良 • 上一篇    下一篇

剑麻苯丙氨酸裂解酶基因的鉴定及表达分析

黄兴1(), 习金根1, 陈涛2, 覃旭2, 谭施北1, 陈河龙3, 易克贤1,*()   

  1. 1中国热带农业科学院环境与植物保护研究所/农业农村部热带作物有害生物综合治理重点实验室/海南省热带农业有害生物监测与控制重点实验室, 海南海口 571101
    2广西壮族自治区亚热带作物研究所, 广西南宁 530001
    3中国热带农业科学院热带生物技术研究所, 海南海口571101
  • 收稿日期:2020-05-30 接受日期:2020-09-13 出版日期:2021-06-12 网络出版日期:2020-10-10
  • 通讯作者: 易克贤
  • 作者简介:E-mail: huangxing@catas.cn
  • 基金资助:
    国家重点研发计划项目(2018YFD0201100);国家现代农业产业技术体系建设专项(CARS-16);海南省自然科学基金项目(319QN275);海南省自然科学基金项目(320RC698);广西重点研发计划项目(桂科AB18221105);“一带一路”热带项目(BARTP-08)

Identification and expression of PAL genes in sisal

HUANG Xing1(), XI Jin-Gen1, CHEN Tao2, QIN Xu2, TAN Shi-Bei1, CHEN He-Long3, YI Ke-Xian1,*()   

  1. 1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, Hainan, China
    2Guangxi Subtropical Crops Research Institute, Nanning 530001, Guangxi, China
    3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
  • Received:2020-05-30 Accepted:2020-09-13 Published:2021-06-12 Published online:2020-10-10
  • Contact: YI Ke-Xian
  • Supported by:
    The National Key Research and Development Program of China(2018YFD0201100);The China Agriculture Research System(CARS-16);The Hainan Provincial Natural Science Foundation of China(319QN275);The Hainan Provincial Natural Science Foundation of China(320RC698);The Guangxi Key Research and Development Program(桂科AB18221105);The Belt and Road Tropical Project(BARTP-08)

摘要:

剑麻是热带地区重要的纤维作物, 但其分子生物学研究基础薄弱, 纤维发育机制尚未明确。苯丙氨酸裂解酶(phenylalanine ammonia-lyase, PAL)是纤维重要组分木质素生物合成的起始酶, 近年来转录组测序技术快速发展, 使开展剑麻PAL基因相关研究更为便利。本文根据已报道转录组数据成功鉴定出2个含完整编码序列的剑麻PAL基因, 其在剑麻叶片发育过程中的表达模式与前人报道的PAL在纤维发育过程中的活性变化规律一致, 表明其与木质素生物合成密切相关。遗传进化分析结果显示, 剑麻和番麻PAL基因进化关系更近, 选择压力分析结果显示, 剑麻和番麻PAL基因序列选择压力一致且高于太匮龙舌兰PAL基因, 这一现象可能由剑麻和番麻纤维性状的趋同进化引起。此外, 剑麻PAL基因在铜铅胁迫后差异表达不显著, 其可能在重金属胁迫后受到转录后调控。值得一提的是, 在烟草疫霉侵染后, 剑麻PAL基因表达水平上调倍数较高, 其可能同时参与苯丙烷类代谢途径中抗病相关次生代谢产物的合成和细胞壁介导的免疫机制。因此开展剑麻PAL基因功能解析可加深对剑麻纤维发育机制和抗病机制的理解, 对培育高产、优质、多抗剑麻新品种具有重要意义。

关键词: 剑麻, 苯丙氨酸裂解酶基因, 遗传进化, 选择压力, 表达模式, 逆境胁迫

Abstract:

Sisal is an important fiber crop in tropical areas, but its research foundation of molecular biology is relatively weak, and the mechanism of fiber development still remains unclear. Phenylalanine ammonia-lyase (PAL) is the first enzyme of lignin bio-synthesis, which is an important component of fiber. According to published transcriptome data, two sisal PAL genes with complete coding sequences were successfully identified. Their expression patterns during sisal leaf development were consistent with previously reported PAL activity changes during fiber development, indicating that PAL was closely related to lignin bio-synthesis. Phylogenetic analysis showed that sisal PALs were closely related with Agave americana. Selection pressure analysis showed similar selection pressure of PALs in sisal and A. americana, which were higher than those in A. tequilana. This might be caused by the convergent evolution of fiber-related traits in sisal and A. americana. In addition, sisal PALs were not significantly expressed under neither copper nor lead stress, which might be caused by post-transcriptional regulation under heavy metal stresses. It was worth noting that the expression of sisal PALs was highly up-regulated after Phytophthora nicotianae Breda inoculation. Sisal PALs might participate in the bio-synthesis of disease resistance-related secondary metabolites in phenylpropanoid pathway, as well as plant cell-wall mediated immunity. Therefore, functional characterization of sisal PALs could improve the understanding of mechanisms in fiber development and disease resistance, which is of great importance for breeding new sisal varieties with high yield, high quality and multiple resistance.

Key words: sisal, PAL gene, phylogenetic analysis, selection pressure, expression pattern, adverse stress

表1

实时定量PCR引物"

基因
Gene
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
产物长度
Product size (bp)
AhPAL1 AGCAGTGATTGGGTGATGGA GAGGAGGGTGTTGATTCGGA 216
AhPAL2 GCGATTGGGAAGCTCATGTT GAGATGAGGCCCAGTGAGTT 239
AhPP2A CCTCCTCCTCCTTCGGTTTG GCCATGAATGTCACCGCAGA 235

表2

剑麻PAL基因及其蛋白理化性质、亚细胞定位预测"

基因
Gene
碱基长度
Gene length (bp)
蛋白长度
Protein length (aa)
蛋白分子量
Molecular weight (kD)
理论等电点
pI
亚细胞定位
Subcellular localization
AhPAL1 2112 703 76,474.38 5.85 细胞质(2.462) Cytoplasmic (2.462)
AhPAL2 2118 705 76,267.12 5.93 细胞质(2.245) Cytoplasmic (2.245)

表3

龙舌兰属PAL基因序列号"

基因
Gene
物种
Species
GenBank序列号
GenBank accession
AhPAL1 Agave H11648 MT536163
AhPAL2 Agave H11648 MT536164
AmPAL1 Agave americana GBHM01016452.1
AmPAL2 Agave americana GBHM01016955.1
AdPAL1 Agave deserti GAHT01019079.1
AdPAL2 Agave deserti GAHT01004501.1
AqPAL1 Agave tequilana GAHU01002518.1
AqPAL2 Agave tequilana GAHU01004755.1

图1

拟南芥、水稻及龙舌兰属PAL基因遗传进化分析 At: 拟南芥; Ah: 剑麻; Am: 番麻; Ad: 沙漠龙舌兰; Aq: 太匮龙舌兰; Ao: 芦笋; Lus: 亚麻; Gorai: 棉花; Os: 水稻; GRMZM: 玉米; Bradi: 短柄草; Sobic: 高粱。利用ClustalX 2.0软件进行氨基酸序列的多重比对并构建Neighbor-Joining进化树(Bootstrap分析采用1000次重复)。"

表4

龙舌兰属PAL基因选择压力分析"

基因
Gene
物种/物种
Specie/specie
同义突变频率
Ks
非同义突变频率
Ka
非同义突变频率/同义突变频率
Ka/Ks
PAL1 Ad/Ah 0.1176 0.0098 0.083333
Ad/Am 0.2956 0.0155 0.052436
Ad/Aq 0.0179 0.0019 0.106145
PAL2 Ad/Ah 0.3324 0.0271 0.081528
Ad/Am 0.3347 0.0280 0.083657
Ad/Aq 0.0872 0.0129 0.147936

图2

龙舌兰属PAL基因选择压力分析 物种缩写同图1。使用DnaSP进行滑窗法分析, 窗口长度为30 bp, 步移长度为6 bp。"

图3

龙舌兰属PAL基因转录组表达分析 物种缩写同图1。"

图4

剑麻PAL基因在叶片发育和逆境胁迫下的相对表达量 L0: 心叶; L1: 未展开叶; L2: 完全展开叶; CK: 空白对照; CU: 铜胁迫处理; PB: 铅胁迫处理; PN: 烟草疫霉侵染。*, **分别表示在0.05和0.01水平差异显著。"

[1] Li Y, Mai Y W, Ye L. Sisal fibre and its composites: a review of recent developments. Comp Sci Technol, 2000,60:2037-2055.
[2] 许能琨, 余让水, 孙光明. 氮磷钾钙镁肥不同用量对剑麻产量质量和矿质组分的影响. 热带作物学报, 1994,15(1):39-45.
Xu N K, Yu R S, Sun G M. Effects of different levels of NPKCaMg fertilizers on yield, fibre quality and nutrient content of Agave H.11648. Chin J Trop Crops, 1994,15(1):39-45 (in Chinese with English abstract).
[3] 黄兴, 陈涛, 习金根, 贺春萍, 吴伟怀, 梁艳琼, 郑金龙, 李锐, 易克贤. 剑麻单叶农艺性状与鲜叶产量的相关性研究. 中国麻业科学, 2018,40(2):70-74.
Huang X, Chen T, Xi J G, He C P, Wu W H, Liang Y Q, Zheng J L, Li R, Yi K X. The Correlation between single leaf traits and fresh yield of sisal. Plant Fiber Sci China, 2018,40(2):70-74 (in Chinese with English abstract).
[4] Huang X, Xiao M, Xi J, He C, Zheng J, Chen H, Gao J, Zhang S, Wu W, Liang Y, Xie L, Yi K. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes in Agave species. Genes, 2019,10:103.
[5] Deng G, Huang X, Xie L, Tan S, Gbokie T J, Bao Y, Xie Z, Yi K. Identification and expression of SAUR genes in the CAM plant agave. Genes, 2019,10:555.
[6] Huang X, Wang B, Xi J, Zhang Y, He C, Zheng J, Gao J, Chen H, Zhang S, Wu W, Liang Y, Yi K. Transcriptome comparison reveals distinct selection patterns in domesticated and wild Agave species, the important CAM plants. Int J Genomics, 2018,2018:5716518.
[7] 李潞滨, 刘蕾, 何聪芬, 董银卯, 彭镇华. 木质素生物合成关键酶基因的研究进展. 分子植物育种, 2007,5(增刊1):45-51.
Li L B, Liu L, He C F, Dong Y M, Peng Z H. Research progresses on the genes encoding the key enzymes in biosynthetic pathway of lignin. Mol Plant Breed, 2007,5(S1):45-51 (in Chinese with English abstract).
[8] 石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. 中国农学通报, 2011,27(5):288-291.
Shi H Y, Zhang Y X. Molecular characterization of key enzyme genes related to the pathway of lignin biosynthesis. Chin Agric Sci Bull, 2011,27(5):288-291 (in Chinese with English abstract).
[9] Wanner L A, Li G, Ware D, Somssich I E, Davis K R. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol, 1995,27:327-338.
[10] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol, 2008,165:1491-1499.
[11] Raes J, Rohde A, Christensen J H, Van Y D P, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol, 2003,133:1051-1071.
[12] Yu X Z, Fan W J, Lin Y J, Zhang F F, Gupta D K. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis. Ecotoxicology, 2018,27:325-335.
[13] Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007,449:463.
[14] Shi R, Sun Y H, Li Q, Heber S, Sederoff R, Chiang V L. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol, 2010,51:144-163.
[15] Wada K C, Mizuuchi K, Koshio A, Kaneko K, Mitsui T, Takeno K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. J Plant Physiol, 2014,171:895-902.
[16] 李福燕, 张黎明, 李许明, 郭彬, 陈柳燕, 漆智平. 剑麻对铜的耐性与累积效应研究初探. 中国农学通报, 2006,22(12):417-420.
Li F Y, Zhang L M, Li X M, Guo B, Chen L Y, Qi Z P. Sisal tolerance of cupreous and its accumulation preliminary explore. Chin Agric Sci Bull, 2006,22(12):417-420 (in Chinese with English abstract).
[17] 陈柳燕, 张黎明, 李福燕, 郭彬, 李许明, 廖香俊, 漆智平. 剑麻对重金属铅的吸收特性与累积规律初探. 农业环境科学学报, 2007,26:1879-1883.
Chen L Y, Zhang L M, Li F Y, Guo B, Li X M, Liao X J, Qi Z P. A primary research on sisal’s uptake property and the accumulation rule to Pb ions. J Agro-Environ Sci, 2007,26:1879-1883 (in Chinese with English abstract).
[18] 汪平, 高建明, 杨峰, 郑金龙, 刘巧莲, 陈河龙, 易克贤. 烟草疫霉侵染前后剑麻叶片转录组学研究. 热带作物学报, 2014,35:576-582.
Wang P, Gao J M, Yang F, Zheng J L, Liu Q L, Chen H L, Yi K X. Transcriptome of sisal leaf pretreated with Phytophthora nicotianae Breda. Chin J Trop Crops, 2014,35:576-582 (in Chinese with English abstract).
[19] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol, 1990,215:403-410.
[20] Rombel I T, Sykes K F, Rayner S, Johnston S A. ORF-FINDER: a vector for high-throughput gene identification. Gene, 2002,282:33-41.
[21] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999,112:531-552.
[22] Yu C, Chen Y, Lu C, Hwang J. Prediction of protein subcellular localization. Proteins, 2006,64:643-651.
[23] Gross S M, Martin J A, Simpson J, Abraham-Juarez M J, Wang Z, Visel A. De novo transcriptome assembly of drought tolerant CAM plants,Agave deserti and Agave tequilana. BMC Genomics, 2013,14:563.
[24] Abraham P E, Yin H, Borland A M, Weighill D, Lim S D, De Paoli H C, Engle N, Jones P C, Agh R, Weston D J, Wullschleger S D, Tschaplinski T, Jacobson D, Cushman J C, Hettich R L, Tuskan G A, Yang X. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nat Plants, 2016,2:16178.
[25] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
[26] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009,25:1451-1452.
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001,25:402-408.
[28] Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3—new capabilities and interfaces. Nucleic Acids Res, 2012,40:e115.
[29] Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010,153:1526-1538.
[30] Yan F, Li H Z, Zhao P. Genome-wide identification and transcriptional expression of the PAL gene family in common walnut(Juglans regia L.). Genes, 2019,10:46.
[31] 李建军, 郭清泉, 陈建荣. 苎麻木质素形成的相关酶类研究. 中国麻业科学, 2009,31(2):119-124.
Li J J, Guo Q Q, Chen J R. Study on related enzymes of lignin synthesis in ramie. Plant Fiber Sci China, 2009,31(2):119-124 (in Chinese with English abstract).
[32] Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol, 2011,62:549-566.
[33] Sghaier A, Chaabouni Y, Msahli S, Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod, 2012,36:257-266.
[34] Kováčik J, Klejdus B, Hedbavny J, Zoń J. Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile. J Agric Food Chem, 2010,58:10270-10276.
[35] Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol, 2011,58:211-216.
pmid: 21503278
[36] Wang R, Wang G L, Ning Y. PALs: emerging key players in broad-spectrum disease resistance. Trends Plant Sci, 2019,24:785-787.
[37] Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J, 2018,93:614-636.
[38] Duan L, Liu H B, Li X H, Xiao J H, Wang S P. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant, 2014,152:486-500.
pmid: 24684436
[1] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[2] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[3] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[4] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[5] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[6] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[7] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[8] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[9] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[10] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[11] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[12] 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656.
[13] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356.
[14] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
[15] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!