欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2920-2933.doi: 10.3724/SP.J.1006.2022.11109

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响

郑云普1(), 常志杰1, 韩怡1, 卢云泽2, 陈文娜2, 田银帅2, 殷嘉伟2, 郝立华1,3,*()   

  1. 1河北工程大学水利水电学院, 河北邯郸 056038
    2河北工程大学园林与生态工程学院, 河北邯郸 056038
    3南京农业大学园艺学院, 江苏南京 210095
  • 收稿日期:2021-12-03 接受日期:2022-03-25 出版日期:2022-11-12 网络出版日期:2022-04-21
  • 通讯作者: 郝立华
  • 作者简介:第一作者联系方式: E-mail: zhengyunpu@hebeu.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(32071608);河北省自然科学基金项目(C2020402026);河北省自然科学基金项目(E2021402031)

Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat

ZHENG Yun-Pu1(), CHANG Zhi-Jie1, HAN Yi1, LU Yun-Ze2, CHEN Wen-Na2, TIAN Yin-Shuai2, YIN Jia-Wei2, HAO Li-Hua1,3,*()   

  1. 1School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, Hebei, China
    2School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
    3College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-12-03 Accepted:2022-03-25 Published:2022-11-12 Published online:2022-04-21
  • Contact: HAO Li-Hua
  • Supported by:
    The National Natural Science Foundation of China(32071608);The Natural Science Foundation of Hebei Province(C2020402026);The Natural Science Foundation of Hebei Province(E2021402031)

摘要:

为深入理解未来大气CO2浓度([CO2])升高背景下农田生态系统结构与功能对土壤水分亏缺的响应机制, 利用可精准控制[CO2]的大型环境生长箱, 研究了土壤水分亏缺和大气[CO2]升高对冬小麦气孔特征、净光合速率、水分利用效率、叶片碳氮含量、非结构性碳水化合物含量、核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)活性及其基因表达量的影响。本研究结果表明, 水分亏缺导致冬小麦的总生物量和净光合速率(Pn)分别相比对照降低33%和29%, 而[CO2]升高可以在一定程度上缓解水分亏缺对冬小麦生长及生理过程造成的不利影响。同时, 水分亏缺还使冬小麦气孔开度及其空间分布格局规则性的降低, 但高[CO2]可以通过增加气孔密度和提高气孔分布的规则程度, 进一步优化冬小麦叶片的气体交换效率。另外, [CO2]升高增加水分亏缺条件下冬小麦的Pn, 但同时却导致蒸腾速率(Tr)降低25%, 从而提高叶片的瞬时水分利用效率(WUEI)61%。此外, 水分亏缺条件下[CO2]升高不仅导致Rubisco酶初始活性、活化率以及可溶性蛋白含量分别增加66%、38%和15%, 而且还分别提高Rubisco酶编码基因RbcL3RbcS2的表达水平453%和417%。上述结果表明, 水分亏缺条件下, [CO2]升高可以通过调整气孔特征和Rubisco酶活性及其编码基因表达水平, 进一步优化冬小麦的气体交换效率, 从而提高植株生物量、净光合速率以及水分利用效率。研究结果将为深入理解未来气候变化背景下冬小麦响应[CO2]升高和水分亏缺的生理及分子机制提供理论依据。

关键词: 土壤水分亏缺, CO2浓度升高, 冬小麦, 气孔特征, 光合性能, Rubisco基因表达

Abstract:

To understand the mechanisms of agricultural ecosystem structure and function in response to soil water deficit under future elevated atmospheric CO2 concentration, we examined the effects of soil water deficit and elevated CO2 concentration ([CO2]) on the stomatal traits, leaf photosynthesis, water use efficiency as well as Rubisco activity and gene expression of winter wheat with environmental growth chambers, whereby the [CO2] was controlled accurately with CO2 sensors. Our results showed that water deficit significantly decreased the plant biomass and net photosynthesis rates (Pn) of winter wheat by 33% and 29%, whereas elevated [CO2] partially mitigated the negative effects of water deficit on plant growth and physiological processes of winter wheat. Meanwhile, water deficit also reduced the stomatal width and regularity of stomatal distribution pattern on winter wheat leaves, but higher [CO2] could optimize the leaf gas exchange efficiency with more regular distribution pattern of stomata. Moreover, elevated [CO2] not only enhanced the Pn of winter wheat plants under water deficit, but also substantially reduced the transpiration rates (Tr) by 25%, and thus elevated [CO2] increased the water use efficiency by 61% when winter wheat plants subjected to water deficit. In addition, elevated [CO2] boosted the initial activity and activation state of Rubisco as well as soluble protein content by 66%, 38%, and 15%, and meanwhile significantly enhanced the gene expression levels of RbcL3 and RbcS2 by 453% and 417%, respectively. These results suggested that elevated [CO2] may optimize leaf gas exchange through modifying stomatal traits as well as the activity and gene express of Rubisco, and thus increased plant biomass, Pn, and water use efficiency to efficiently alleviate the physiological stress of water deficit on growth and development processes of winter wheat. Our findings may not only provide data for further understanding the impacts of water deficit on grain yield and water use efficiency of winter wheat under elevated [CO2], but also have important significance for adaptation management of agricultural ecosystems under global change.

Key words: water deficiency, doubling CO2 concentration, winter wheat, stomatal traits, photosynthetic performance, Rubisco gene expression

图1

水分亏缺和[CO2]升高对冬小麦叶面积(a)及生物量(b)的影响 不同字母标注表示处理间为显著性差异(P < 0.05), 相同字母标注表示处理间为不显著性差异(P > 0.05)。"

表1

水分亏缺和[CO2]升高对冬小麦叶面积和生物量的交互影响"

处理因素 Treatment 叶面积 Leaf area 植株生物量 Plant biomass
CO2浓度 CO2 concentration ([CO2]) 0.371 0.117
水分 Watering <0.001 <0.001
[CO2]×水分 [CO2] × Watering 0.005 0.199

表2

水分亏缺和[CO2]升高对冬小麦气孔形态参数的影响"

气孔形态特征
Stomatal morphology
叶面
Leaf surface
对照
Control
水分亏缺
Water deficit
[CO2]升高
e[CO2]
水分亏缺×[CO2]升高
Water deficit × e[CO2]
P
P-value
气孔密度
Stomatal density
近轴面Adaxial 51.1±1.2 b 61.1±2.0 a 64.8±2.6 a 60.1±2.3 a <0.001
远轴面Abaxial 29.3±1.2 c 32.5±0.8 bc 40.3±2.3 a 34.7±0.8 b <0.001
气孔长度
Stomatal length (μm)
近轴面Adaxial 40.4±1.2 a 38.9±2.0 a 38.0±0.5 a 40.3±1.4 a 0.402
远轴面Abaxial 37.0±1.1 b 38.9±1.0 ab 39.4±1.6 ab 42.5±0.9 a 0.076
气孔宽度
Stomatal width (μm)
近轴面Adaxial 4.1±0.2 b 4.8±0.2 a 3.6±0.1 c 3.5±0.1 c <0.001
远轴面Abaxial 4.2±1.5 a 4.3±0.4 a 4.2±1.0 a 3.5±0.3 a 0.338
气孔周长
Stomatal perimeter (μm)
近轴面Adaxial 85.2±2.5 a 82.5±3.8 a 79.3±1.2 a 83.9±2.8 a 0.337
远轴面Abaxial 78.3±2.5 b 82.3±2.0 ab 83.4±3.6 ab 88.8±1.7 a 0.163
气孔面积
Stomatal area (μm2)
近轴面Adaxial 167.4±15.6 a 191.4±13.0 a 129.5±6.1 b 129.1±6.2 b 0.002
远轴面Abaxial 146.4±20.0 a 167.9±8.0 a 173.7±18.2 a 146.9±3.6 a 0.521
气孔形状指数
Stomatal shape index (%)
近轴面Adaxial
远轴面Abaxial
0.15±0.012 b 0.17±0.003 a 0.14±0.007 bc 0.14±0.009 c <0.001
0.15±0.006 a 0.16±0.002 a 0.15±0.003 a 0.14±0.003 b 0.011

表3

水分和[CO2]对冬小麦气孔形态特征的交互影响"

气孔形态特征
Stomatal morphology
气孔密度
Stomatal density
气孔长度
Stomatal length
气孔宽度
Stomatal width
气孔周长
Stomatal perimeter
气孔面积
Stomatal area
形状指数
Shape
index
CO2浓度 CO2 concentration ([CO2]) <0.001 0.198 0.001 0.377 0.028 <0.001
水分 Watering 0.547 0.118 0.715 0.164 0.662 0.866
叶面 Leaf surface <0.001 0.984 0.904 0.816 0.677 0.964
[CO2]×水分 [CO2] × Watering <0.001 0.184 0.019 0.288 0.086 <0.001
[CO2]×叶面 [CO2] × Leaf surface 0.909 0.061 0.065 0.049 0.013 0.042
水分×叶面 Watering × Leaf surface 0.107 0.255 0.178 0.354 0.489 0.054
[CO2]×水分×叶面 [CO2] × Watering × Leaf surface 0.230 0.479 0.741 0.466 0.568 0.984

图2

水分亏缺和[CO2]升高对冬小麦近轴面(a)和远轴面(b)气孔分布格局的影响 图中的Upper 95%表示95%置信区间上界线, Lower 95%表示95%置信区间下界线。CK代表Control,D代表干旱处理,ED代表CO2浓度升高和干旱处理,E代表CO2浓度升高处理。"

图3

水分亏缺和[CO2]升高对冬小麦叶片气体交换参数的影响 不同字母标注表示处理间为显著性差异(P < 0.05), 相同字母标注表示处理间为不显著性差异(P > 0.05)。"

表4

水分亏缺和[CO2]升高对冬小麦叶片气体交换的交互影响"

气体交换
Gas exchange
净光合速率
Pn
蒸腾速率
Tr
气孔导度
Gs
瞬时水分利用率
WUEI
暗呼吸速率
Rd
细胞间[CO2]
Ci
CO2浓度 CO2 concentration ([CO2]) 0.071 0.143 0.044 <0.001 0.211 0.278
水分 Watering 0.008 <0.001 0.002 <0.001 <0.001 <0.001
[CO2]×水分 [CO2] × Watering 0.369 0.071 0.019 0.567 0.275 0.144

表5

水分亏缺和[CO2]升高对冬小麦叶片非结构性碳水化合物的交互影响"

处理因素
Treatment
果糖
Fructose
蔗糖
Sucrose
葡萄糖
Glucose
可溶性糖
Soluble sugars
淀粉
Starch
非结构性碳水化合物
Total NSC
CO2浓度 CO2 concentration ([CO2]) 0.001 <0.001 0.098 0.256 0.293 0.499
水分 Watering 0.352 0.098 0.001 0.877 0.618 0.526
[CO2]×水分 [CO2] × Watering 0.001 <0.001 0.001 <0.001 0.028 0.944

图4

水分亏缺和[CO2]升高对冬小麦叶片非结构性碳水化合物的影响 不同字母标注表示处理间为显著性差异(P < 0.05), 相同字母标注表示处理间为不显著性差异(P > 0.05)。"

表6

水分亏缺和[CO2]升高对冬小麦叶片C、N和C/N的交互影响"

处理因素
Treatment
C含量
Carbon content
N含量
Nitrogen content
C/N
C/N ratio
CO2浓度 CO2 concentration ([CO2]) 0.004 0.055 0.151
水分 Watering 0.308 0.841 0.904
[CO2]×水分 [CO2] × Watering 0.443 0.293 0.438

图5

水分亏缺和[CO2]升高对冬小麦叶片C、N含量及C/N的影响 不同字母标注表示处理间为显著性差异(P < 0.05), 相同字母标注表示处理间为不显著性差异(P > 0.05)。"

图6

水分亏缺和[CO2]升高对冬小麦叶片Rubisco活性和可溶性蛋白的影响"

图7

水分亏缺和[CO2]升高对冬小麦叶片基因表达量的影响 不同字母标注表示处理间为显著性差异(P < 0.05), 相同字母标注表示处理间为不显著性差异(P > 0.05)。"

图8

水分亏缺和[CO2]升高协同影响冬小麦叶片光合、蒸腾及水分利用的过程及其潜在机制[19]"

[1] Hessini K, Martinez J P, Gandour M, Albouchi A, Soltani A, Abdelly C. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environ Exp Bot, 2009, 67: 312-319.
[2] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6
[3] Bijanzadeh E, Emam Y. Effect on defoliation and drought stress on yield components and chlorophyll content of wheat. Pak J Biol Sci, 2010, 13: 699-705.
doi: 10.3923/pjbs.2010.699.705
[4] Bencze S, Bamberger Z, Janda T, Balla K, Varga B. Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels. Photosynthetica, 2014, 52: 71-82.
doi: 10.1007/s11099-014-0008-y
[5] Liu B B, Li M, Li Q M, Cui Q Q, Zhang W D, Ai X Z, Bi H G. Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica, 2018, 56: 942-952.
doi: 10.1007/s11099-017-0753-9
[6] Wang J, Wang E L, Yang X G, Zhang F S, Yin H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012, 113: 825-840.
doi: 10.1007/s10584-011-0385-1
[7] Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.
doi: 10.1038/nature03972
[8] McDowell N G, Sevanto S. The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol, 2010, 186: 264-266.
doi: 10.1111/j.1469-8137.2010.03232.x pmid: 20409181
[9] Oury F X, Godin C, Mailliard A, Chassin A, Gardet O, Giraud A, Heumez E, Morlais J Y, Rolland B, Rousset M. A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. Eur J Agron, 2012, 40: 28-38.
doi: 10.1016/j.eja.2012.02.007
[10] Yang Q P, Zhang W D, Li R, Xu M, Wang S L. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 2016, 30: 1863-1871.
doi: 10.1007/s00468-016-1419-0
[11] Suter D, Frehner M, Fischer B U. Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enhancement but not in a controlled environment. New Phytol, 2002, 154: 65-75.
doi: 10.1046/j.1469-8137.2002.00368.x
[12] Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). J Plant Physiol, 2015, 184: 89-97.
doi: 10.1016/j.jplph.2015.07.003
[13] Zheng Y P, He C L, Guo L L, Hao L H, Cheng D J, Li F, Peng Z P, Xu M. Soil water status triggers CO2 fertilization effect on the growth of winter wheat (Triticum aestivum). Agric Forest Meteorol, 2020, 291: 108097.
doi: 10.1016/j.agrformet.2020.108097
[14] Fan X D, Cao X, Zhou H, Hao L H, Dong W, He C L, Xu M, Wu H X, Wang L S, Chang Z J, Zheng Y P. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ Exp Bot, 2020, 179: 104203.
doi: 10.1016/j.envexpbot.2020.104203
[15] Yu J J, Chen L H, Xu M, Huang B R. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature drought stress, and the combined stresses. Crop Sci, 2012, 52: 1848-1858.
doi: 10.2135/cropsci2012.01.0030
[16] Aranda X, Agustí C, Joffre R, Fleck I. Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiol Plant, 2006, 128: 302-312.
doi: 10.1111/j.1399-3054.2006.00745.x
[17] Nebauer S G, Renau-Morata B, Guardiola J L, Rosa-Victoria M. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiol, 2010, 31: 169c177.
[18] Pooter H, Knopf O, Wright I J, Temme A A, Hogewoning S W, Graf A, Cernusak L A, Pons T L. A meta-analysis of responses of C3 plants to atmospheric CO2: dose-response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytol, 2021, 233: 1560-1596.
doi: 10.1111/nph.17802
[19] Li F, Guo D G, Gao X D, Zhao X N. Water deficit modulates the CO2 fertilization effect on plant gas exchange and leaf-level water use efficiency: a meta-analysis. Front Plant Sci, 2021, 12: 775477.
doi: 10.3389/fpls.2021.775477
[20] 张存杰, 王胜, 宋艳玲, 蔡雯悦. 我国北方地区冬小麦干旱灾害风险评估. 干旱气象, 2014, 32: 883-893.
Zhang C J, Wang S, Song Y L, Cai W Y. Risk assessment of winter wheat drought disaster in north China. Arid Meteorol, 2014, 32: 883-893. (in Chinese with English abstract)
[21] 唐星林, 曹永慧, 顾连宏, 周本智. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 2017, 37: 6633-6645.
Tang X L, Cao Y H, Gu L H, Zhou B Z. Progress in leaf photosynthetic physiology response to environmental factors based on FvCB model. Acta Ecol Sin, 2017, 37: 6633-6645. (in Chinese with English abstract)
[22] Wall G W, Garcia R L, Kimball B A, Hunsaker D J, Pinter Jr P J, Long S P, Osborne C P, Hendrix D L, Wechsung F, Wechsung G, Leavitt S W, LaMorte R L, Idso S B. Interactive effects of elevated carbon dioxide and drought on wheat. Agron J, 2006, 98: 354-381.
doi: 10.2134/agronj2004.0089
[23] Li F S, Kang S Z, Zhang J H. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agric Water Manage, 2004, 67: 221-233.
doi: 10.1016/j.agwat.2004.01.005
[24] Wu D X, Wang G X, Bai Y F, Liao J X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 2004, 104: 493-507.
doi: 10.1016/j.agee.2004.01.018
[25] Nicotra A B, Atkin O K, Bonser S P, Davidson A M, Finnegan E J, Mathesius U, Poot P, Purugganan M D, Richards C L, ValladaresV F, van Kleunen M. Plant pheno-typic plasticity in a changing climate. Trends Plant Sci, 2010, 15: 684-692.
doi: 10.1016/j.tplants.2010.09.008 pmid: 20970368
[26] Merewitz E B, Belanger F C, Warnke S E, Huang B R. Identification of quantitative trait loci linked to drought tolerance in a colonial × creeping bent grass hybrid population. Crop Sci, 2012, 52: 1891-1901.
doi: 10.2135/cropsci2012.01.0037
[27] 郑云普, 徐明, 王建书, 邱帅, 王贺新. 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015, 41: 601-612.
doi: 10.3724/SP.J.1006.2015.00601
Zheng Y P, Xu M, Wang J S, Qiu S, Wang H X. Stomatal characteristics of maize leaves and response of gas exchange process to climate warming. Acta Agron Sin, 2015, 41: 601-612. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00601
[28] Hendrix D L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci, 1993, 33: 1306-1311.
doi: 10.2135/cropsci1993.0011183X003300060037x
[29] Way D A, Sage R F. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B. S. P.]. Global Change Biol, 2008, 14: 624-636.
doi: 10.1111/j.1365-2486.2007.01513.x
[30] Jiang Y P, Cheng F, Zhou Y H, Xia X J, Mao W H, Shi K, Chen Z X, Yu J Q.Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol, 2012, 194: 932-943.
[31] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Dwlta Delta C (T)) method. Methods, 2002, 25: 402-408.
doi: 10.1006/meth.2001.1262
[32] 何冰清, 芮蒙蒙, 马越, 王一州. 植物气孔计算生物学模型及其应用. 科学通报, 2021, 66: 994-1001.
He B Q, Rui M M, Ma Y, Wang Y Z. The computational biological model of plant stomata and its application. Chin Sci Bull, 2021, 66: 994-1001. (in Chinese with English abstract)
doi: 10.1360/TB-2020-0843
[33] 李菲.大气CO2浓度升高对大豆叶片结构、光合性能及水分利用效率的影响研究. 河北工程大学硕士学位论文, 河北邯郸, 2019.
Li F. Effects of Elevated Atmospheric CO2 Concentration on Leaf Structure, Photosynthetic Performance and Water Use Efficiency of Soybean. MS Thesis of Hebei University of Engineering, Handan, Hebei, China, 2019. (in Chinese with English abstract)
[34] Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-908.
doi: 10.1038/nature01843
[35] 张放, 陈丹, 张士良, 吴荣兰. 高浓度CO2对不同水分条件下枇杷生理的影响. 园艺学报, 2003, 30: 647-652.
Zhang F, Chen D, Zhang S L, Wu R L. Effects of high concentration of CO2 on the physiology of loquat under different water conditions. Acta Hortic Sin, 2003, 30: 647-652. (in Chinese with English abstract)
[36] Rachel F, Niju I, Behaeghe T. Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Ann Bot, 1996, 78: 489-497.
doi: 10.1006/anbo.1996.0146
[37] Hugh J E. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ Exp Bot, 2002, 48: 237-246.
doi: 10.1016/S0098-8472(02)00041-2
[38] 景立权, 赵新勇, 周宁, 钱晓晴, 王云霞, 朱建国, 王余龙, 杨连新. 高CO2浓度对杂交水稻光合作用日变化的影响: FACE研究. 生态学报, 2017, 37: 2033-2044.
Jing L Q, Zhao X Y, Zhou N, Qian X Q, Wang Y X, Zhu J G, Wang Y L, Yang L X. Effect of high CO2 concentration on diurnal variation of photosynthesis in hybrid rice: FACE study. Acta Ecol Sin, 2017, 37: 2033-2044. (in Chinese with English abstract)
[39] Moore B, Palmquist D E, Seemann J R. Influence of plant growth at high CO2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley. Plant Physiol, 1997, 115: 241-248.
pmid: 12223804
[40] Zong Y, Shangguan Z P. Increased sink capacity enhances C and N assimilation under drought and elevated CO2 conditions in maize. J Integr Agric, 2016, 15: 2775-2785.
doi: 10.1016/S2095-3119(16)61428-4
[41] Wu D X, Wang G X, Bai Y F, Liao J X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 2004, 104: 493-507.
doi: 10.1016/j.agee.2004.01.018
[42] 王润佳, 高世铭, 张绪成. 高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展. 干旱地区农业研究, 2010, 28(6): 190-195.
Wang R J, Gao S M, Zhang X C. Research progress on the increase of water use efficiency of C3 plant leaves under high atmospheric CO2 concentration. Agric Res Arid Areas, 2010, 28(6): 190-195. (in Chinese with English abstract)
[43] Robredo A, Pérez-López U, Hector S D M, Begoña G M, Maite L, Amaia M P, Alberto M R. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot, 2007, 59: 252-263.
doi: 10.1016/j.envexpbot.2006.01.001
[44] 刘亮, 郝立华, 李菲, 郭丽丽, 张茜茜, 何春霖, 郑云普. CO2浓度和温度对玉米光合性能及水分利用效率的影响. 农业工程学报, 2020, 36(5): 122-129.
Liu L, Hao L H, Li F, Guo L L, Zhang X X, He C L, Zheng Y P. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize. Trans CSAE, 2020, 36(5): 122-129 (in Chinese with English abstract)
[45] Kimball B A, 朱建国, 程磊, Kobayashi K, Bindi M. 开放系统中农作物对空气CO2浓度增加的响应. 应用生态学报, 2002, 13: 1323-1338.
Kimball B A, Zhu J G, Cheng L, Kobayashi K, Bindi M. Crop response to increased air CO2 concentration in an open system. J Appl Ecol, 2002, 13: 1323-1338 (in Chinese with English abstract).
[46] Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189-1202.
[47] Henderson J N, Haxr A S, Dunkle A M, Salvucci M E, Wachter R M. Biophysical characterization of higher plant Rubisco activase. Biochim Biophys Acta, 2012, 1834: 87-97.
[48] Carmo-silva A E, Salvucci M E. The activity of Rubisco’s molecular chaperone, rubisco activase, in leaf extracts. Photosyn Res, 2011, 108: 143-155
doi: 10.1007/s11120-011-9667-8
[49] Tian X, Lei Y. Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant, 2006, 50: 775-778.
doi: 10.1007/s10535-006-0129-7
[50] 杜兴良, 兰盼龙, 张皓帆, 赵光伟, 李华, 汪月霞, 赵会杰. 一氧化氮对高温与干旱复合胁迫下小麦叶片Rca基因表达及Rubisco活性的影响. 河南农业大学学报, 2018, 52: 868-873.
Du X L, Lan P L, Zhang H F, Zhao G W, Li H, Wang Y X, Zhao H J. Effects of nitric oxide on Rca gene expression and Rubisco activity in wheat leaves under combined stress of high temperature and drought. J Henan Agric Univ, 2018, 52: 868-873. (in Chinese with English abstract)
[51] Deridder B P, Salvucci M E. Modulation of rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanism. Plant Sci, 2007, 172: 246-254.
doi: 10.1016/j.plantsci.2006.08.014
[52] 张国, 李滨, 邹琦. 小麦Rubisco活化酶基因的克隆和表达特性. 植物学通报, 2005, 22: 313-319.
Zhang G, Li B, Zou Q. Cloning and expression characteristics of wheat rubisco activase gene. Chin Bull Bot, 2005, 22: 313-319. (in Chinese with English abstract)
[1] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[2] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[6] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[7] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[8] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[9] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[10] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[11] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[12] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[13] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[14] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[15] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .