欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2908-2919.doi: 10.3724/SP.J.1006.2022.23005

• 耕作栽培·生理生化 • 上一篇    下一篇

施钾量对夏玉米维管组织结构与物质运输性能的影响

宋杰1(), 任昊1, 赵斌1, 张吉旺1, 任佰朝1, 李亮2, 王少祥2, 黄金苓2, 刘鹏1,*()   

  1. 1山东农业大学作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安 271018
    2东平县农业农村局, 山东泰安 271500
  • 收稿日期:2022-01-11 接受日期:2022-05-05 出版日期:2022-11-12 网络出版日期:2022-05-23
  • 通讯作者: 刘鹏
  • 作者简介:第一作者联系方式: E-mail: 1253500871@qq.com
  • 基金资助:
    本研究由山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08)

Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.)

SONG Jie1(), REN Hao1, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, LI Liang2, WANG Shao-Xiang2, HUANG Jin-Ling2, LIU Peng1,*()   

  1. 1State Key Laboratory of Crop Biology/ College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Dongping County Agricultural and Rural Bureau, Tai’an 271500, Shandong, China
  • Received:2022-01-11 Accepted:2022-05-05 Published:2022-11-12 Published online:2022-05-23
  • Contact: LIU Peng
  • Supported by:
    The Shandong Province Key Research and Development Program(LJNY202103);The Shandong Agriculture Research System(SDAIT-02-08)

摘要:

大田试验于2020和2021年在山东省泰安市东平农科所进行, 以登海605 (Denghai 605, DH605)为试验材料, 在统一的氮、磷肥用量(N 225 kg hm-2、P2O5 110 kg hm-2)条件下开展钾肥梯度试验, 分别设置K0 (0 kg hm-2)、K1 (150 kg hm-2)、K2 (225 kg hm-2)、K3 (300 kg hm-2)和K4 (375 kg hm-2) 5个钾肥(K2O)施用量, 研究施钾量对夏玉米维管系统结构和物质运输性能的影响。结果表明, 玉米叶片厚度、叶脉横截面积和木质部面积随施钾量的增加先升高后降低, 2020年和2021年分别在K2和K3时达到最大。施钾显著提高了玉米基部茎节和穗柄的横截面积、大小维管束数目和面积, 茎秆维管束面积占横截面积之比在K2处理最大, 而穗柄维管束面积占比则以K2、K4处理显著高于其他处理。穗轴维管束数目和面积随钾肥的施入呈先升高后降低的趋势, K2、K3处理的维管束总面积显著高于其他处理。施钾显著提高了茎秆、穗柄伤流强度, 灌浆期在K2处理下最高。相关分析表明, 茎秆维管束总数及其总面积、穗柄维管束总数及其总面积与籽粒产量显著正相关; 穗轴大维管束数目和穗轴维管束总面积与千粒重显著正相关。综合上述结果, 本试验条件下施钾量为225 kg K2O hm-2时可促进玉米叶、茎、穗中维管系统的发育, 提高伤流强度, 增强“流”系统的通畅性, 进而提高夏玉米籽粒产量。

关键词: 施钾量, 夏玉米, 维管束系统, 伤流强度, 籽粒产量

Abstract:

Field experiments were conducted at the Dongping Agricultural Science Institute, Tai’an city, Shandong province from 2020 to 2021, using Denghai 605 (DH605) as the experimental material. The objective of the study is to explore the effects of K application on vascular system structure and material transport properties in summer maize, five K2O application rates of 0 kg hm-2 (K0), 150 kg hm-2 (K1), 225 kg hm-2 (K2), 300 kg hm-2 (K3), and 375 kg hm-2 (K4) were set under uniform N and P fertilizer rates (N 225 kg hm-2 and P2O5 110 kg hm-2). The results showed that maize leaf thickness, leaf vein cross-sectional area, and xylem area increased and then decreased with the increase of K application rates, and reached the maximum at K3 treatment. K application significantly increased the cross-sectional area, the number and area of small and big vascular bundles at the basal stalk and ear-pedicel in maize. The ratio of stalk vascular area to cross-sectional area reached the highest value at K2 treatment, while the ratio of ear-pedicel vascular was significantly higher in K2 and K4 treatments than in other treatments. The number and area of vascular bundles of ear-axis revealed a trend of increasing first and then decreasing with K fertilization, and the total area of vascular bundles was significantly higher in K2 and K3 treatments than in other treatments. K application significantly increased the bleeding intensity of stem and ear-pedicel, both of which were the highest under K2 treatment at filling stage. Correlation analysis revealed that the total area and number of vascular bundles of the stem, the total area and total number of vascular bundles of the ear-pedicel were significantly and positively correlated with grain yield. The total area of vascular bundles of ear-axis were significantly and positively correlated with 1000-grain weight. In conclusion, K2 conditions promoted the development of the vascular systems in the leaves, stems, and ears of maize, increased the bleeding sap, and enhanced the fluidity of the “flow” system, thus improving grain yield in summer maize.

Key words: potassium application, summer maize, vascular bundles, bleeding intensity, grain yield

表1

施钾量对夏玉米产量及产量构成因素的影响"

年份 Year 处理
Treatment
单位面积穗数
Ear number
(×104 hm-2)
穗粒数
Grains number
(Grain per ear)
千粒重
1000-kernel weight (g)
籽粒产量
Grain yield (t hm-2)
2020 K0 6.52±0.07 a 558.28±3.71 c 324.03±0.15 c 11.79±0.10 c
K1 6.62±0.13 a 581.18±9.69 ab 346.07±4.39 a 13.34±0.32 a
K2 6.56±0.04 a 590.29±4.31 a 351.15±2.56 a 13.59±0.15 a
K3 6.62±0.10 a 575.71±6.71 b 336.02±1.03 b 12.79±0.30 b
K4 6.58±0.04 a 584.44±4.66 ab 333.97±2.37 b 12.84±0.20 b
2021 K0 6.54±0.78 a 544.05±2.64 b 326.38±1.29 b 11.61±0.44 c
K1 6.42±0.16 a 564.08±17.58 a 342.28±5.23 a 12.65±0.32 b
K2 6.61±0.17 a 557.32±15.11 a 338.16±1.58 a 13.43±0.53 a
K3 6.48±0.10 a 574.65±15.97 a 334.39±6.35 a 12.50±0.24 b
K4 6.62±0.21 a 581.56±14.62 a 326.76±3.46 b 12.58±0.13 b

图1

2021年吐丝期不同处理下的玉米穗位叶横切图 处理同表1。标尺为50 µm。"

表2

不同施钾量对夏玉米吐丝期穗位叶解剖结构的影响"

年份
Year
处理
Treatment
上表皮厚度
Upper epidermis thickness (μm)
下表皮厚度
Under epidermis thickness (μm)
叶片厚度
Leaf thickness
(μm)
叶脉横截面积
Cross section area of veins (μm2)
叶脉木质部面积
Xylem area of veins
(μm2)
2020 K0 20.09±0.91 b 15.03±0.49 c 74.01±3.25 c 2961.24±13.62 c 326.34±9.25 c
K1 19.82±0.40 b 15.06±0.82 c 80.52±1.76 b 3220.31±61.25 b 354.63±21.39 b
K2 21.22±1.61 a 16.57±0.27 a 88.75±2.51 a 3516.26±24.56 a 407.36±15.57 a
K3 20.69±0.33 a 15.55±0.53 b 84.50±1.75 a 3385.21±72.65 a 396.93±13.68 a
K4 21.13±1.07 a 15.96±0.18 b 87.75±2.58 a 3551.31±47.34 a 409.61±21.29 a
2021 K0 15.15±0.37 c 11.25±0.22 d 88.86±0.88 c 2316.71±35.35 c 277.44±13.64 d
K1 16.82±0.38 b 15.55±0.42 a 113.86±1.55 b 2655.25±37.03 b 293.59±16.53 c
K2 19.68±0.38 a 15.08±0.68 ab 111.07±1.23 b 2750.35±59.88 b 371.00±10.98 b
K3 16.89±0.39 b 12.55±10.31 c 120.70±3.13 a 3539.24±52.28 a 417.32±14.75 a
K4 20.69±0.25 a 14.22±0.33 b 112.05±1.86 b 3431.80±68.34 a 364.56±12.26 b

图2

施钾量对夏玉米抽雄期净光合速率的影响 处理同表1。柱上不同小写字母表示不同处理在0.05水平差异显著。"

图3

2021年吐丝期不同处理下的玉米第3节茎秆小维管束(A)和大维管束(B)结构图 处理同表1, 标尺为500 µm。"

表3

灌浆期年不同施钾量对第3节茎秆解剖结构的影响"

年份 Year 处理
Treatment
N1 N2 N0 Stotal (mm2) N0/Stotal A1 (mm2) A2 (mm2) A0 (mm2) A0/Stotal (%)
2020
K0
196.64±
9.82 b
227.83±
4.91 c
424.45±
10.27 c
320.03±
12.31 d
1.33±
0.04 a
0.101±
0.004 c
0.071±
0.007 c
36.03±
1.36 c
11.26±
0.79 c
K1
198.87±
5.40 b
254.75±
7.80 b
453.62±
8.59 b
337.77±
7.68 c
1.34±
0.02 a
0.116±
0.006 b
0.091±
0.001 a
46.25±
1.05 b
13.69±
0.83 ab
K2
226.01±
11.32 a
272.88±
10.06 a
498.88±
12.58 a
369.41±
13.28 a
1.35±
0.05 a
0.121±
0.005 a
0.102±
0.005 a
55.18±
2.36 a
14.94±
1.02 a
K3
232.67±
12.31 a
284.28±
6.28 a
516.95±
9.75 a
389.6±
11.94 b
1.33±
0.03 a
0.111±
0.006 b
0.075±
0.004 bc
47.15±
1.37 b
12.10±
1.24 b
K4
229.09±
11.34 a
255.04±
14.03 b
484.13±
15.29 a
364.25±
8.75 b
1.33±
0.02 a
0.113±
0.004 b
0.086±
0.005 b
47.82±
2.96 b
13.13±
0.91 b
2021
K0
180.85±
3.73 b
263.73±
9.31 b
448.29±
15.38 c
322.19±
6.64 b
1.39±
0.06 a
0.106±
0.007 c
0.080±
0.003 c
40.57±
2.10 d
12.58±
0.47 d
K1
198.84±
10.89 ab
265.27±
8.55 b
464.11±
17.49 b
354.22±
19.41 ab
1.32±
0.03 a
0.145±
0.005 a
0.114±
0.003 a
59.07±
2.31 b
16.74±
0.36 a
K2
220.17±
12.53 a
297.07±
10.44 a
518.89±
7.31 a
392.21±
22.33 a
1.33±
0.05 a
0.153±
0.015 a
0.116±
0.002 a
68.33±
2.41 a
16.95±
0.05 a
K3
200.27±
5.59 ab
284.58±
6.79 ab
482.17±
11.75 ab
374.41±
10.45 ab
1.29±
0.02 a
0.123±
0.007 b
0.091±
0.004 bc
50.28±
1.23 c
13.44±
0.15 c
K4
199.38±
4.87 ab
292.06±
9.54 ab
491.44±
11.04 ab
372.76±
20.65 ab
1.33±
0.04 a
0.141±
0.009 a
0.098±
0.005 b
56.73±
1.56 b
15.31±
0.40 b

图4

2021年施钾量对夏玉米茎秆伤流强度的影响 处理同表1。R1: 吐丝期; R2: 灌浆期。柱上不同小写字母表示不同处理在0.05水平差异显著。"

图5

2021年灌浆期不同处理下的玉米穗柄小维管束(A)和大维管束(B)结构图 处理同表1, 标尺为500 μm。"

表4

灌浆期不同施钾量对穗柄解剖结构的影响"

年份
Year
处理 Treatment N1 N2 N0 Stotal (mm2) N0/Stotal A1 (mm2) A2 (mm2) A0 (mm2) A0/Stotal (%)
2020
K0
55.93±
1.38 c
138.56±
2.34 d
194.50±
3.68 c
125.47±
2.17 c
1.55±
0.04 b
0.083±
0.004 c
0.067±
0.001 c
13.93±
0.67 c
11.10±
0.75 c
K1
65.52±
3.27 b
153.84±
5.37 c
219.37±
5.87 b
137.64±
5.78 b
1.59±
0.02 b
0.096±
0.005 b
0.086±
0.001 b
19.52±
0.85 b
14.18±
1.01 b
K2
82.44±
6.21 a
177.23±
4.28 b
256.68±
9.21 a
149.25±
3.73 a
1.74±
0.01 a
0.105±
0.005 ab
0.093±
0.002 a
25.14±
1.47 a
16.84±
0.98 a
K3
75.34±
4.28 ab
170.22±
4.35 b
245.56±
7.91 a
147.58±
5.32 a
1.66±
0.06 a
0.098±
0.004 b
0.086±
0.006 b
22.02±
1.25 ab
14.92±
0.84 b
K4
74.92±
4.38 ab
190.66±
2.29 a
265.57±
5.41 a
156.87±
4.73 a
1.69±
0.05 a
0.118±
0.006 a
0.098±
0.003 a
27.52±
0.39 a
17.55±
0.51 a
2021
K0
73.46±
3.98 c
194.85±
6.72 b
268.32±
8.28 c
130.86±
5.74 b
2.05±
0.02 a
0.078±
0.004 b
0.066±
0.005 b
18.59±
1.34 c
14.21±
0.25 c
K1
76.44±
4.36 b
207.10±
5.82 b
283.54±
9.32 b
136.17±
3.15 b
2.08±
0.03 a
0.098±
0.006 a
0.065±
0.006 b
20.95±
1.95 c
15.38±
0.67 b
K2
88.78±
5.29 a
243.37±
9.53 a
332.15±
13.27 a
158.17±
3.57 a
2.10±
0.05 a
0.108±
0.005 a
0.073±
0.005 ab
27.44±
1.57 b
17.35±
0.53 a
K3
87.40±
6.29 a
237.99±
12.45 a
325.39±
16.28 a
163.40±
1.85 a
1.99±
0.06 a
0.100±
0.005 a
0.071±
0.064 b
25.64±
2.19 b
15.69±
0.64 b
K4
88.13±
2.98 a
256.11±
8.29 a
344.23±
11.77 a
164.76±
2.34 a
2.09±
0.04 a
0.109±
0.004 a
0.080±
0.005 a
30.01±
2.41 a
18.21±
0.71 a

图6

2021年施钾量对夏玉米穗柄伤流强度的影响 处理同表1。R1: 吐丝期; R2: 灌浆期。柱上不同小写字母表示不同处理在0.05水平差异显著。"

表5

2021年灌浆期不同施钾量对夏玉米穗轴解剖结构的影响"

处理 Treatment N1 N2 A1 (mm2) A1 (mm2) A01 (mm2) A01 (mm2) A0 (mm2)
K0 67.12±2.52 c 76.32±1.63 c 0.187±0.01 c 0.035±0.01 ab 12.59±0.15 c 2.66±0.06 c 15.19±0.51 c
K1 70.67±4.81 c 88.51±2.54 b 0.199±0.02 b 0.037±0.01 a 14.06±0.10 bc 3.25±0.44 bc 17.32±01.21 c
K2 90.32±4.12 ab 106.35±4.48 a 0.214±0.10 a 0.038±0.01 a 19.47±0.88 a 4.41±0.28 a 23.88±0.80 a
K3 95.33±2.52 a 110.35±5.74 a 0.211±0.08 a 0.037±0.01 a 20.04±0.54 a 3.95±0.32 ab 23.99±0.31 a
K4 78.67±7.43 bc 113.54±3.21 a 0.207±0.01 a 0.033±0.01 b 16.28±1.53 b 4.16±0.19 ab 20.44±1.52 b

表6

维管束结构与产量性状的相关性分析"

参数
Parameter
茎秆维管束
总数
Number of total Vb
茎秆维管束
总面积
Total area of Vb
穗柄维管束
总数目
Number of total Vb
穗柄维管束总面积
Total area of Vb
穗轴大维管束数目
Number of big Vb
穗轴小维管束数目
Number of small Vb
穗轴维管束
总面积
Total area of Vb
茎秆维管束总面积
Total area of Vb
0.827
穗柄维管束总数目
Number of total Vb
0.853 0.570
穗柄维管束总面积
Total area of Vb
0.839 0.589 0.991**
穗轴大维管束数目
Number of big Vb
0.741 0.418 0.748 0.655
穗轴小维管束数目
Number of small Vb
0.793 0.536 0.979** 0.956** 0.797
穗轴维管束总面积
Total area of Vb
0.851 0.569 0.840 0.767 0.980** 0.870
每公顷穗数
Ear numbers
0.031 0.268 0.137 0.259 -0.504 0.096 -0.436
穗粒数
Grains numbers
0.403 0.357 0.607 0.672 0.027 0.555 0.115
千粒重
1000-kernel weight
0.837 0.639 0.817 0.737 0.989** 0.839 0.991**
籽粒产量
Grain yield
0.882* 0.972** 0.934* 0.937* 0.765 0.912* 0.777
[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 汪顺义, 刘庆, 史衍玺, 李欢. 氮钾配施对甘薯光合产物积累及分配的影响. 中国农业科学, 2017, 50: 2706-2716.
Wang S Y, Liu Q, Shi Y X, Li H. Interactive effects of nitrogen and potassium on photosynthesis product distribution and accumulation of sweet potato. Sci Agric Sin, 2017, 50: 2706-2716. (in Chinese with English abstract)
[3] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响. 作物学报, 2022, 48: 529-537.
Zhang G W, Li K, Li S J, Wang X J, Yang C Q, Liu R X. Effects of sink-limiting treatments on leaf carbon metabolism in soybean. Acta Agron Sin, 2022, 48: 529-537 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14024
[4] 慕美财, 张曰秋, 崔从光, 衣淑玉, 麻常运, 荀艳波. 冬小麦高产群体源-库-流特征及指标研究. 中国生态农业学报, 2010, 18: 35-40.
Mu M C, Zhang Y Q, Cui C G, Yi S Y, Ma C Y, Xun Y B. Analysis of source-sink-translocation characteristics and indicators for high-yield colony of winter wheat. Chin J Eco-Agric, 2010, 18: 35-40. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00035
[5] Liang X G, Gao Z, Zhang L, Shen S, Zhao X, Liu Y P, Zhou L L, Paul M, Zhou S L. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC Plant Biol, 2019, 19: 508.
doi: 10.1186/s12870-019-2068-4
[6] Li Y B, Tao H B, Zhang B C, Huang S B, Wang P. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Front Plant Sci, 2018, 9: 1326.
doi: 10.3389/fpls.2018.01326
[7] 柳开楼, 黄晶, 叶会财, 韩苗, 韩天富, 宋惠洁, 胡志华, 胡丹丹, 李大明, 余喜初, 黄庆海, 李文军, 陈国钧. 长期施钾对双季玉米钾素吸收利用和土壤钾素平衡的影响. 植物营养与肥料学报, 2020, 26: 2235-2245.
Liu K L, Huang J, Ye H C, Han M, Han T F, Song H J, Hu Z H, Hu D D, Li D M, Yu X C, Huang Q H, Li W J, Chen G Y. Effects of long-term potassium fertilization on potassium uptake, utilization and soil potassium balance in double maize cropping system. J Plant Nutr Fert, 2020, 26: 2235-2245. (in Chinese with English abstract)
[8] Ghulam H A, Javaid A, Rafiq A, Moazzam J, Muhammad A H, Shafaqat A, Muhammad I. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul, 2015, 76: 111-125.
doi: 10.1007/s10725-015-0050-1
[9] Li Z L, Liu Z G, Zhang M, Li C L, Li Y C, Wan Y S, Cliff G M. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res, 2020, 196: 104438.
doi: 10.1016/j.still.2019.104438
[10] 王晓磊, 于海秋, 刘宁, 依兵, 曹敏建. 耐低钾玉米自交系延缓叶片衰老的生理特性. 作物学报, 2012, 38: 1672-1679.
Wang X L, Yu H Q, Liu N, Yi B, Cao M J. Physiological characteristics of delaying leaf senescence in maize inbred lines tolerant to potassium deficiency. Acta Agron Sin, 2012, 38: 1672-1679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01672
[11] 熊明彪, 雷孝章, 田应兵, 宋光煜, 曹叔尤. 钾素对小麦茎、叶解剖结构的影响. 麦类作物学报, 2003, 23(3): 53-57.
Xiong M B, Lei X Z, Tian Y B, Song G X, Cao S Y. Effects of potassium on wheat stem-leaf anatomical structure. J Triticeae Crops, 2003, 23(3): 53-57. (in Chinese with English abstract)
[12] 李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38: 2093-2099.
doi: 10.3724/SP.J.1006.2012.02093
Li B, Zhang J W, Cui H Y, Jin L B, Dong S T, Liu P, Zhao B. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions. Acta Agron Sin, 2012 38: 2093-2099. (in Chinese with English abstract)
[13] 姚培清, 王易琼, 彭正萍. 钾肥用量对夏玉米干物质和钾素积累、分配及抗倒性的影响. 中国土壤与肥料, 2016, (4): 113-117.
Yao P Q, Wang Y Q, Peng Z P. Effects of potash application rates on the accumulation and distribution of dry matter and potassium nutrient and lodging resistance of maize. Soil Fert Sci China, 2016, (4): 113-117. (in Chinese with English abstract)
[14] 杜雄, 张立峰, 李会彬. 钾素营养对饲用玉米养分吸收动态及产量品质形成的影响. 植物营养与肥料学报, 2007, 13: 393-397.
Du X, Zhang L F, Li H B. Effects of potassium application on nutrient absorption dynamics, biomass and quality formation of forage maize. Plant Nutr Fert Sci, 2007, 13: 393-397. (in Chinese with English abstract)
[15] 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系. 中国农业科学, 2010, 43: 729-736.
He P, Jin J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot. Sci Agric Sin, 2010, 43: 729-736. (in Chinese with English abstract)
[16] 郭艳青, 朱玉玲, 刘凯, 裴书君, 赵斌, 张吉旺. 水钾互作对高产夏玉米茎秆结构和功能的影响. 应用生态学报, 2016, 27(1): 143-149.
Guo Y Q, Zhu Y L, Liu K, Pei S J, Zhao B, Zhang J W. Effects of water-potassium interaction on stalk structure and function of high-yield summer maize. Chin J Appl Ecol, 2016, 27(1): 143-149. (in Chinese with English abstract)
[17] 黄孟雨.栽培方式对山栏稻源库流特性及稻米品质的影响. 海南大学硕士学位论文, 海南海口, 2020.
Huang M Y. Effect of Cultivation Methods on the Characteristics of Source-Sink-Flow and Grain Quality of Shanlan Upland Rice. MS Thesis of Hainan Agricultural University, Haikou, Hainan, China, 2020. (in Chinese with English abstract)
[18] 徐海, 朱春杰, 郭艳华, 刘宏光, 王嘉宇, 杨莉, 杨乾华, 郑家奎, 徐正进, 陈温福. 生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系. 中国农业科学, 2009, 42: 1540-1549.
Xu H, Zhu C J, Guo Y H, Liu H G, Wang J Y, Yang L, Yang Q H, Zheng J K, Xu Z J, Chen W F. Effect of ecological environments on panicle traits and its relationship with subspecies characteristics in filial generations of cross between indica and japonica. Sci Agric Sin, 2009, 42: 1540-1549 (in Chinese with English abstract).
[19] 冯海娟.夏玉米维管束系统结构与功能特性对种植密度的响应. 山东农业大学硕士学位论文, 山东泰安, 2014.
Feng H J. Effect of Plant Population on Microstructure and Function of Vascular Bundle of Summer Maize (Zea mays L.). MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014. (in Chinese with English abstract)
[20] 慕瑞瑞.不同施钾量对滴灌水肥一体化春玉米产量和淀粉形成的影响. 宁夏大学硕士学位论文, 宁夏银川, 2019.
Mu R R. Effects of Different Potassium Rates on Yield and Starch Formation of Spring Maize Integrated with Drip Irrigation. MS Thesis of Ningxia Agricultural University, Yinchuan, Ningxia, China, 2019. (in Chinese with English abstract)
[21] 王寅, 高强, 李翠兰, 焉莉, 冯国忠, 王少杰, 刘振刚, 宋立新, 房杰. 吉林省玉米施钾增产效应及区域差异. 植物营养与肥料学报, 2019, 25: 1335-1344.
Wang Y, Gao Q, Li C L, Yan L, Feng G Z, Wang S J, Liu Z G, Song L X, Fang J. Maize yield responses to potassium fertilizer and regional differences in Jilin province. J Plant Nutr Fert, 2019, 25: 1335-1344. (in Chinese with English abstract)
[22] 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国. 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, 2008, (6): 23-27.
Wang S, Yang J F, Han X R, Liu X H, Zhan X M, Liu S G. Effects of different fertilization treatments on photosynthetic characteristics of spring maize in dry farming. Soil Fert Sci China, 2008, (6): 23-27. (in Chinese with English abstract)
[23] 姜存仓, 郝艳淑, 王晓丽, 夏颖, 王运华. 钾对不同钾效率棉花基因型叶片解剖结构的影响. 植物营养与肥料学报, 2011, 17: 1538-1544.
Jiang C C, Hao Y S, Wang X L, Xia Y, Wang Y H. Effects of potassium fertilization on leaf anatomical structures of different cotton genotypes. Plant Nutr Fert Sci, 2011, 17: 1538-1544. (in Chinese with English abstract)
[24] 李文娟, 何萍, 金继运. 钾素营养对玉米生育后期干物质和养分积累与转运的影响. 植物营养与肥料学报, 2009, 15: 799-807.
Li W J, He P, Jin J Y. Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize. Plant Nutr Fert Sci, 2009, 15: 799-807. (in Chinese with English abstract)
[25] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量性状的影响及其相互关系. 作物学报, 2021, 47: 964-973.
doi: 10.3724/SP.J.1006.2021.02040
Cheng Y S, Hu M Y, Du Z M, Yan B C, Li L, Wang Z W, Ju X T, Sun L L, Xu H. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation. Acta Agron Sin, 2021, 47: 964-973. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02040
[26] 樊海潮, 顾万荣, 杨德光, 张倩, 李彩凤, 尉菊萍, 李文龙, 李晶, 魏湜. 不同化控剂对春玉米根系伤流液特性的影响及其激素调控机制. 玉米科学, 2018, 26(1): 56-63.
Fan H C, Gu W R, Yang D G, Zhang J, Li C F, Wei J P, Li W L, Li J, Wei T. Effects of mixed compound of DCPTA and ETH on root bleeding sap performance of spring maize and hormone regulation mechanism. J Maize Sci, 2018, 26(1): 56-63. (in Chinese with English abstract)
[27] 谭杰, 孔凡磊, 曾晖, 袁继超. 川中丘陵春玉米适宜钾肥用量研究. 植物营养与肥料学报, 2016, 22: 838-846.
Tan J, Kong F L, Zeng H, Yuan J C. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China. J Plant Nutr Fert, 2016, 22: 838-846. (in Chinese with English abstract)
[28] Wasaya A, Yasir T A, Sarwar N, Farooq O, Rehman A U, Mubeen K, Ali M, Affan M, Aziz A. Foliage applied potassium improves stay green, photosynthesis and yield of maize (Zea mays L.) under rainfed condition. Plant Physiol Rep, 2021, 26: 38-48.
doi: 10.1007/s40502-021-00572-6
[29] 何启平, 董树亭, 高荣岐. 玉米果穗维管束系统的发育及其与穗粒库容的关系. 作物学报, 2005, 31: 995-1000.
He Q P, Dong S T, Gao R Z. Relationship between development of spike vascular bundle and sink capacity of ear and kernel in maize (Zea mays L.). Acta Agron Sin, 2005, 31: 995-1000.
[1] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[2] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[3] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[4] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[5] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[6] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[7] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[8] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[9] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[10] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[11] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[12] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[13] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[14] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[15] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .