欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3144-3154.doi: 10.3724/SP.J.1006.2022.11117

• 耕作栽培·生理生化 • 上一篇    下一篇

高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析

丁永刚(), 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰(), 郭文善()   

  1. 江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学小麦研究中心, 江苏扬州 225009
  • 收稿日期:2021-12-31 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 丁锦峰,郭文善
  • 作者简介:E-mail: dygwheat@163.com
  • 基金资助:
    国家自然科学基金项目(31771711);国家自然科学基金项目(32172111);国家重点研发计划项目(2016YFD0300405);江苏省现代农业(小麦)产业技术体系, 江苏省高校优势学科建设项目, 江苏省科技副总经理项目(FZ20211472);宿迁千人领军人才聚集计划项目资助

Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency

DING Yong-Gang(), CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng(), GUO Wen-Shan()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Wheat Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-12-31 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: DING Jin-Feng,GUO Wen-Shan
  • Supported by:
    National Natural Science Foundation of China(31771711);National Natural Science Foundation of China(32172111);National Key Research and Development Program of China(2016YFD0300405);Technology System of Modern Agriculture Industry (wheat) in Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Project of the Vice General Manager of Science and Technology of Jiangsu Province(FZ20211472);Plan of Gathering 1000 Leading Talents of Suqian

摘要:

为给半冬性小麦优质、高产、高效协同生产提供理论依据, 在江苏睢宁连续3个小麦生长季, 以22个半冬性品种为材料进行大田试验。根据籽粒产量和氮肥利用效率, 通过系统聚类将品种分为高产高效(HH)、中产中效(MM)和低产低效(LL) 3个类型, 研究其产量构成、氮素吸收与利用和籽粒品质间差异。结果表明, 3个年度HH籽粒产量和氮肥利用效率均显著高于MM和LL。HH实现高产是由于具有显著高的总结实粒数, 即穗数和穗粒数的协同增加; 实现高效得益于高的氮肥吸收效率和氮肥生理利用效率。HH高的氮肥吸收效率是由于花前氮素积累量的提高, 有助于更多的氮素向籽粒转运, 进而提升籽粒氮素积累量。分析指示, 在一定范围内籽粒产量和总结实粒数可与单粒氮素积累量协同提升; 当籽粒产量高于9.5 t hm-2 或总结实粒数高于2.2×108 hm-2, 单粒氮素积累有下降趋势。蛋白质、湿面筋含量和沉降值表现为HH类型均显著高于MM和LL。综上所述, 高产高效型半冬性小麦品种具有高的总结实粒数、氮素吸收与转运量以及籽粒氮素积累的特征, 且因单粒氮素积累量提升, 改善了籽粒中蛋白相关品质。

关键词: 半冬性小麦品种, 籽粒产量, 氮肥利用效率, 产量构成, 氮素积累和转运, 籽粒品质

Abstract:

To provide a theoretical support for the synergic production of good quality, high yield, and high efficiency of semi-winter type wheat, the field experiment was conducted with 22 cultivars for three consecutive growth seasons in Suining, Jiangsu province, China. To investigate the differences in yield components, N uptake and utilization, and grain quality between the groups, according to grain yield and nitrogen use efficiency (NUE), cultivars were divided into high-yield and -efficiency (HH), medium-yield and -efficiency (MM), and low-yield and -efficiency (LL) groups using systematic clustering. The results showed that grain yield and NUE of the HH group were significantly higher than MM and LL groups in the three wheat seasons. Compared with the other groups, HH group had a higher grain yield because of more grain numbers, namely, more spikes and grains per spike, and a greater NUE of HH group due to increasing N uptake efficiency (NUpE) and N utilization efficiency (NUtE). The high NUpE of HH group was mainly depended on improving N uptake before anthesis, which could promote N translocation into grains and increase N accumulation in grains. The results also indicated that grain yield and grain number were synergistically increased with N accumulation per grain in a certain range. When grain yield was more than 9.5 t hm-2 or the total grains were higher than 2.2×108 hm-2, N accumulation per grain was a decreasing trend. The grain protein content, wet gluten content, and sedimentation value of the HH group were significantly higher than MM and LL groups. In conclusion, the semi-winter cultivars with high-yield and high-efficiency had the characteristics of high grain number, strong N uptake and translocation ability, and high grain N accumulation. Furthermore, grain protein quality could be improved by enhancing N accumulation per grain.

Key words: semi-winter wheat cultivar, grain yield, nitrogen use efficiency, yield components, nitrogen accumulation and translocation, grain quality

表1

2016-2019年度小麦播种前0~20 cm土层基础地力"

取样日期
Sampling date
(year-month-day)
速效氮
Available nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
有机质
Organic matter
(g kg-1)
2016-11-18 71.09 16.03 103.00 15.29
2017-11-01 66.07 44.31 69.65 15.17
2018-10-30 106.00 43.20 116.00 11.70

图1

2016-2019年度小麦生育期间降水量和日平均温度"

表2

参试品种和审定时间"

序号Number 品种
Cultivar name
审定时间
Released time
序号
Number
品种
Cultivar name
审定时间
Released time
1 保麦2号 Baomai 2 2012 12 新麦26 Xinmai 26 2010
2 保麦5号 Baomai 5 2014 13 徐麦33 Xumai 33 2013
3 淮麦32 Huaimai 32 2012 14 徐麦9158 Xumai 9158 2014
4 淮麦33 Huaimai 33 2014 15 烟农19 Yannong 19 2001
5 江麦919 Jiangmai 919 2013 16 烟农999 Yannong 999 2016
6 连麦7号 Lianmai 7 2014 17 安农0711 Annong 0711 2014
7 明麦1号 Mingmai 1 2009 18 鄂麦580 Emai 580 2012
8 瑞华麦520 Ruihuamai 520 2015 19 鄂麦596 Emai 596 2009
9 冠麦1号Guanmai 1 2016 20 郑麦9023 Zhengmai 9023 2001
10 保麦6号 Baomai 6 2015 21 淮麦35 Huaimai 35 2013
11 中育1211 Zhongyu 1211 2017 22 济麦22 Jimai 22 2006

表3

参试小麦品种籽粒产量和氮肥利用效率聚类结果"

年份
Year
类型
Group
籽粒产量
Grain yield
(t hm-2)
变异范围
Range
(t hm-2)
氮肥利用效率 NUE
(kg kg-1)
变异范围
Range
(kg kg-1)
品种序号
Serial number of cultivars
个数 Number 占比
Proportion (%)
2017 高产高效 HH 8.9 ± 0.4 a 8.2-9.5 23.3 ± 1.1 a 21.9-25.2 2, 4, 5, 8, 9, 10, 11, 15, 21 9 41
中产中效 MM 8.2 ± 0.5 b 7.3-8.7 19.1 ± 1.7 b 16.1-21.1 3, 6, 7, 12, 13, 14, 16, 18, 19, 22 10 45
低产低效 LL 6.8 ± 0.4 c 6.5-7.2 13.0 ± 1.6 c 11.3-14.5 1, 17, 20 3 14
2018 高产高效 HH 7.4 ± 0.2 a 7.0-7.6 15.6 ± 1.0 a 14.0-16.9 2, 7, 13, 17, 20, 21, 22 7 32
中产中效 MM 6.7 ± 0.2 b 6.9-6.4 12.7 ± 0.5 b 12.1-13.5 3, 4, 9, 11, 14, 15 6 27
低产低效 LL 6.0 ± 0.3 c 5.2-6.3 10.2 ± 0.7 c 9.1-11.2 1, 5, 6, 8, 10, 12, 16, 18, 19 9 41
2019 高产高效 HH 9.4 ± 0.4 a 8.6-9.8 19.2 ± 1.3 a 17.8-21.7 2, 4, 11, 13, 14, 16, 17, 19, 20, 21, 22 11 50
中产中效 MM 8.9 ± 0.3 a 8.3-9.1 16.1 ± 0.4 b 15.6-16.7 3, 5, 7, 10, 15, 18 6 27
低产低效 LL 8.0 ± 0.5 b 7.4-8.7 13.2 ± 1.5 c 11.8-14.4 1, 6, 8, 9, 12 5 23

表4

不同类型小麦品种产量构成因素差异"

年份
Year
类型
Group
穗数
Spike number (×104 hm-2)
穗粒数
Grains per spike
总结实粒数
Grain number (×108 hm-2)
千粒重
1000-grain weight (g)
2017 高产高效 HH 513 ± 22 a 40.57 ± 0.78 a 2.08 ± 0.01 a 45.25 ± 0.78 a
中产中效 MM 475 ± 23 b 39.22 ± 1.91 a 1.87 ± 0.13 b 45.08 ± 0.05 a
低产低效 LL 419 ± 32 c 36.32 ± 2.81 b 1.51 ± 0.14 c 44.49 ± 0.04 a
2018 高产高效 HH 493 ± 16 a 38.19 ± 0.52 a 1.87 ± 0.67 a 41.07 ± 0.91 a
中产中效 MM 462 ± 25 b 38.14 ± 1.29 a 1.76 ± 0.92 b 39.19 ± 1.86 a
低产低效 LL 430 ± 22 c 36.43 ± 0.85 b 1.58 ± 0.80 c 39.13 ± 0.70 b
2019 高产高效 HH 592 ± 36 a 37.32 ± 0.80 a 2.20 ± 0.01 a 43.69 ± 1.05 a
中产中效 MM 569 ± 27 ab 37.50 ± 0.98 a 2.14 ± 0.01 a 42.57 ± 1.33 a
低产低效 LL 539 ± 10 b 35.10 ± 1.80 b 1.89 ± 0.11 b 43.28 ± 1.61 a

表5

不同小麦品种间籽粒产量和产量构成因素相关性分析"

产量构成
Yield component
籽粒产量 Grain yield
2017 2018 2019
穗数 Spike number 0.87 ** 0.86 ** 0.78 **
穗粒数Grains per spike 0.68 ** 0.53 ** 0.60 **
总结实粒数 Total grains 0.86 ** 0.91 ** 0.86 **
千粒重1000-grain weight 0.23 ns 0.57 ** 0.27 ns

表6

不同类型小麦品种氮肥吸收效率和氮肥生理利用效率差异"

类型
Group
2017 2018 2019
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
高产高效 HH 50.1 ± 2.3 a 46.4 ± 0.9 a 44.8 ± 4.5 a 35.1 ± 4.0 a 48.1 ± 3.1 a 39.9 ± 2.8 a
中产中效 MM 42.6 ± 3.8 b 45.0 ± 3.8 a 35.4 ± 3.6 b 36.1 ± 4.3 a 42.4 ± 2.9 b 38.1 ± 2.6 a
低产低效 LL 35.4 ± 1.7 c 36.9 ± 5.4 b 31.1 ± 4.2 c 33.2 ± 4.5 a 39.3 ± 1.6 b 33.6 ± 3.5 b

图2

品种间氮肥利用效率和氮肥吸收效率、氮肥生理利用效率相关性分析 **、ns分别表示显著相关(P < 0.01)和相关性不显著(P > 0.05)。缩写同表3和表6。"

表7

不同类型小麦品种氮素积累和转运差异"

年份
Year
类型
Group
花前氮素积累量
NA at pre-anthesis
(kg hm-2)
花后氮素积累量
NA at post-anthesis
(kg hm-2)
花前氮素转运量
N translocation at pre-anthesis (kg hm-2)
花前氮素转运率
N translocation efficiency at pre-anthesis (%)
2017 高产高效HH 177 ± 10 a 36.6 ± 4.1 a 122 ± 5 a 69.3 ± 2.6 a
中产中效MM 155 ± 14 b 35.0 ± 7.4 a 102 ± 12 b 65.7 ± 5.5 a
低产低效LL 126 ± 5 c 37.3 ± 2.3 a 85 ± 6 c 67.5 ± 2.3 a
2018 高产高效HH 160 ± 6 a 32.2 ± 9.0 a 120 ± 5 a 74.6 ± 6.4 a
中产中效MM 151 ± 4 b 30.2 ± 4.9 a 114 ± 6 a 74.9 ± 4.7 a
低产低效LL 141 ± 8 c 29.9 ± 3.6 a 102 ± 9 b 73.2 ± 3.7 a
2019 高产高效HH 175 ± 9 a 44.8 ± 8.3 a 127 ± 8 a 73.9 ± 4.3 a
中产中效MM 155 ± 9 ab 43.8 ± 9.2 a 113 ± 8 b 72.2 ± 3.4 a
低产低效LL 143 ± 12 b 43.1 ± 5.4 a 102 ± 3 c 71.6 ± 3.9 a

表8

不同小麦品种氮肥吸收效率与氮素积累、转运相关性分析"

氮素积累和转运
N accumulation and translocation
氮肥吸收效率 NUpE (%)
2017 2018 2019
花前氮素积累量 NA at pre-anthesis 0.84 ** 0.86 ** 0.76 **
花后氮素积累量 NA at post-anthesis 0.15 ns 0.09 ns 0.50 *
花前氮素转运量 N translocation at pre-anthesis 0.80 ** 0.65 ** 0.61 **
花前氮素转运率 N translocation efficiency 0.15 ns 0.16 ns 0.01 ns

图3

不同类型小麦品种籽粒氮素积累量、成熟期营养器官氮素积累量和单粒氮素积累量差异 柱形图上不同小写字母表示品种类型间差异显著(P < 0.05)。缩写同表7。"

图4

不同品种间籽粒产量、总结实粒数和单粒氮素积累量的相关性 **表示在显著相关(P < 0.01)。缩写同表7。"

图5

不同类型小麦品种蛋白质含量、湿面筋含量和沉降值差异 柱形图上不同小写字母表示品种类型间差异显著(P < 0.05)。"

表9

单粒氮素积累量和蛋白质含量、湿面筋含量以及沉降值相关性分析"

品质性状
Quality trait
单粒氮素积累量 NA per grain
2017 2018 2019
蛋白质含量 Protein content 0.73 ** 0.65 ** 0.80 **
湿面筋含量 Wet gluten content 0.63 ** 0.58 ** 0.68 **
沉降值Sedimentation value 0.70 ** 0.64 ** 0.52 *
[1] 吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31: 2593-2603.
doi: 10.13287/j.1001-9332.202008.029
Lyu G D, Wang C, Jin X M, Xu J L, Wang R X, Sun X Y, Qian Z G, Wu K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chin J Appl Ecol, 2020, 31: 2593-2603. (in Chinese with English abstract)
[2] Yang X L, Lu Y L, Ding Y, Yin X F, Raza S J, Tong Y A. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Res, 2017, 206: 1-10.
doi: 10.1016/j.fcr.2017.02.016
[3] Rasmussen I S, Dresbøll D B, Thorup-Kristensen K. Winter wheat cultivars and nitrogen (N) fertilization-Effects on root growth, N uptake efficiency and N use efficiency. Eur J Agron, 2015, 68: 38-49
doi: 10.1016/j.eja.2015.04.003
[4] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49: 2267-2279.
Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Sci Agric Sin, 2016, 49: 2267-2279. (in Chinese with English abstract)
[5] Kant S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Semin Cell Dev Biol, 2018, 74: 89-96.
doi: S1084-9521(17)30329-4 pmid: 28838687
[6] Sinha S K, Kumar A, Tyagi A, Venkatesh K, Paul D, Singh N K, Mandal P K. Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiol Biochem, 2020, 148: 246-259.
doi: 10.1016/j.plaphy.2020.01.018
[7] Cassman K G, Dobermann A R, Walters D T, Yang H S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Env Resour, 2003, 28: 315-358.
[8] Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9: 597-605.
pmid: 15564127
[9] Tian H, Fu J, Drijber R A, Gao Y J. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. J Cereal Sci, 2015, 61: 48-54.
doi: 10.1016/j.jcs.2014.09.007
[10] Zheng B Q, Zhang X Q, Wang Q, Li W Y, Huang M, Zhou Q, Cai J, Wang X, Cao W X, Dai T B, Jiang D. Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Res, 2021, 267: 108145.
[11] 薛艳芳, 韩小伟, 张慧, 高英波, 钱欣, 蒋丽萍, 崔振岭, 李宗新, 刘开昌. 不同氮效率玉米品种灌浆期氮素转运特性和产量对氮素形态的响应. 玉米科学, 2020, 28(3): 163-172.
Xue Y F, Han X W, Zhang H, Gao Y B, Qian X, Jiang L Y, Cui Z L, Li Z X, Liu K C. Characteristics of nitrogen translocation during the grain-filling period and grain yield of different maize cultivars with varied nitrogen efficiencies in response to different nitrogen forms. J Maize Sci, 2020, 28(3): 163-172. (in Chinese with English abstract)
[12] Li J P, Wang Z M, Yao C S, Zhang Z, Liu Y, Zhang Y H. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. Crop J, 2021, 9: 1397-1407.
doi: 10.1016/j.cj.2020.12.009
[13] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响. 作物学报, 2022, 48: 716-725.
doi: 10.3724/SP.J.1006.2022.11012
Liu Y J, Zheng F N, Zhang X, Chu J P, Yu H T, Dai X L, He M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agron Sin, 2022, 48: 716-725. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11012
[14] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci, 2009, 147: 657-667.
doi: 10.1017/S0021859609990190
[15] 王化敦, 史高玲, 张平平, 张鹏, 高春蕾, 姚金保, 马鸿翔. 长江中下游小麦品种籽粒品质对氮素的敏感性分析. 南方农业学报, 2017, 48: 1568-1573.
Wang H D, Shi G L, Zhang P P, Zhang P, Gao C L, Yao J B, Ma H X. Sensitivity of wheat grain quality to nitrogen application in middle and lower reaches of Yangtze River. J South Agric, 2017, 48: 1568-1573. (in Chinese with English abstract)
[16] 赵广才. 小麦高产创建. 北京: 中国农业出版社, 2014, p 12.
Zhao G C. High Yield Creation of Wheat. Beijing: China Agriculture Press, 2014. p 12. (in Chinese)
[17] 马庆, 张玉坤. 近十年安徽省淮北半冬性小麦区试品种品质分析. 种子, 2020, 39(6): 99-103.
Ma Q, Zhang Y K. Quality analysis of trial varieties planted in semi-winter wheat area in Huaibei region of Anhui province in recent ten years. Seed, 2020, 39(6): 99-103. (in Chinese)
[18] Call L, Kapeller M, Grausgruber H, Reiter E, Schoenlechner R, D’Amico S. Effects of species and breeding on wheat protein composition, J Cereal Sci, 2020, 93: 102974.
[19] 国家质量技术监督局. 小麦粉湿面筋测定方法, GB/T 14608-1993, 1993.
Supervising Department of Quality and Technology of China. Method for determination of wet gluten in flour, GB/T 14608-1993, 1993. (in Chinese)
[20] Tian Z W, Jing Q, Dai T B, Jiang D, Cao W X. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2011, 124: 417-425.
doi: 10.1016/j.fcr.2011.07.012
[21] Peng C J, Zhang Z C, Li Y, Zhang Y, Dong H B, Fang Y H, Han L P, Xu W G, Hu L. Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan province. Field Crops Res, 2022, 277: 108406.
[22] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征. 作物学报, 2020, 46: 544-556.
doi: 10.3724/SP.J.1006.2020.91041
Ding Y G, Li F J, Wang Y H, Tang X Q, Du T Q, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Characteristics of yield components and population quality in high-nitrogen-utilization wheat cultivars. Acta Agron Sin, 2020, 46: 544-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91041
[23] Liu Y, Liao Y C, Liu W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J, 2021, 9: 412-426.
doi: 10.1016/j.cj.2020.06.013
[24] 张向前, 乔玉强, 杜世州, 赵竹. 早播下不同类型小麦品种叶片光合及籽粒灌浆的差异. 麦类作物学报, 2014, 34: 1225-1232.
Zhang X Q, Qiao Y Q, Du S Z, Zhao Z. Differences in leaf photosynthesis and grain filling rate among different types of wheat variety under early sowing. J Triticeae Crops, 2014, 34: 1225-1232. (in Chinese with English abstract)
[25] Tian Z W, Li Y, Liang Z H, Guo H, Cai J, Jiang D, Cao W X, Dai T B. Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2016, 196: 251-260.
doi: 10.1016/j.fcr.2016.07.007
[26] Xu C L, Tao H B, Wang P, Wang Z L. Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence. J Integr Agric, 2016, 15: 63-75.
doi: 10.1016/S2095-3119(15)61047-4
[27] 徐彩龙, 王振林, 尹燕枰, 蔡瑞国, 王平, 郭俊祥, 李勇, 翟学旭, 刘铁宁. 15N示踪法研究弱光对不同穗型冬小麦氮素积累和转运的影响. 植物营养与肥料学报, 2013, 19: 1-10.
Xu C L, Wang Z L, Yin Y P, Cai R G, Wang P, Guo J X, Li Y, Zhai X X, Liu T N. Effect of shading on nitrogen accumulation and translocation of winter wheat with different spike types using 15N tracer technique. Plant Nutr Fert Sci, 2013, 19: 1-10. (in Chinese with English abstract)
[28] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res, 2011, 123: 139-152.
doi: 10.1016/j.fcr.2011.05.010
[29] Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J, 1991, 83: 864-870.
doi: 10.2134/agronj1991.00021962008300050018x
[30] 樊玉参, 石玉, 于振文, 张永丽. 不同产量潜力小麦品种氮素积累与转运的差异. 麦类作物学报, 2021, 41: 1496-1502.
Fan Y S, Shi Y, Yu Z W, Zhang Y L. Difference of nitrogen accumulation and translocation of wheat varieties with different yield potential. J Triticeae Crops, 2021, 41: 1496-1502. (in Chinese with English abstract)
[31] 李欣欣, 石祖梁, 王久臣, 王飞, 徐志宇, 江荣风. 稻茬冬小麦氮肥吸收、残留和损失特性. 应用生态学报, 2020, 31: 3691-3699.
doi: 10.13287/j.1001-9332.202011.021
Li X X, Shi Z L, Wang J C, Wang F, Xu Z Y, Jiang R F. Characteristics of uptake, residual and loss of nitrogen fertilizer in winter wheat after rice stubble. Chin J Appl Ecol, 2020, 31: 3691-3699. (in Chinese with English abstract)
[32] 丁永刚, 汤小庆, 梁鹏, 罗周, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 减氮对不同氮效率小麦品种花后光合物质生产力和产量的影响. 麦类作物学报, 2021, 41: 490-498.
Ding Y G, Tang X Q, Liang P, Luo Z, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effects of reduced nitrogen application on post-anthesis photosynthetic production and grain yield of wheat cultivars with various nitrogen utilization efficiency. J Triticeae Crops, 2021, 41: 490-498. (in Chinese with English abstract)
[33] 李欣欣, 石祖梁, 王久臣, 徐志宇, 江荣风. 氮肥基追比对稻茬小麦氮素转运及利用的影响. 麦类作物学报, 2021, 41: 61-71.
Li X X, Shi Z L, Wang J C, Xu Z Y, Jiang R F. Effect of nitrogen application on nitrogen translocation and utilization in winter wheat in rice-wheat rotation. J Triticeae Crops, 2021, 41: 61-71. (in Chinese with English abstract)
[34] 张丽霞, 杨永辉, 尹钧, 武继承, 潘晓莹. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2): 275-282.
Zhang L X, Yang Y H, Yin J, Wu J C, Pan X Y. Effects of drip fertigation on accumulation and translocation of dry matter and nitrogen together with yield in wheat. Trans CSAM, 2021, 52(2): 275-282. (in Chinese with English abstract)
[35] Pommel B, Gallais A, Coque M, Quilleré I, Hirel B, Prioul J L, Andrieu B, Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203-211.
doi: 10.1016/j.eja.2005.10.001
[36] Okami M, Kato Y, Yamagishi J. Role of early vigor in adaptation of rice to water-saving aerobic culture: Effects of nitrogen utilization and leaf growth. Field Crops Res, 2011, 124: 124-131.
doi: 10.1016/j.fcr.2011.06.013
[37] Rajala A, Hakala K, Mäkelä P, Muurinen S, Peltonen-Sainio P. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res, 2009, 114: 263-271.
doi: 10.1016/j.fcr.2009.08.007
[1] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[2] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[3] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[4] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[5] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[6] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
[7] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[8] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[9] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[10] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[11] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[12] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[13] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[14] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
[15] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[8] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .