欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3155-3165.doi: 10.3724/SP.J.1006.2022.12087

• 耕作栽培·生理生化 • 上一篇    下一篇

结实期动态温度对软米粳稻产量和品质的影响

胡雅杰(), 余恩唯, 丛舒敏, 李娈, 薛建涛, 夏陈钰, 郭保卫, 邢志鹏   

  1. 扬州大学农学院 / 江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2021-12-12 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-20
  • 通讯作者: 胡雅杰
  • 基金资助:
    国家自然科学基金项目(31701350);国家自然科学基金项目(31601246);江苏省大学生创新创业训练计划项目(202111117065Y);江苏省作物遗传生理重点实验室开放课题(YCSL202103);江苏省水稻产业技术体系(JATS[2020]432);江苏省高校优势学科建设工程项目资助

Effects of dynamic temperature at grain filling stage on yield and quality of soft japonica rice

HU Ya-Jie(), YU En-Wei, CONG Shu-Min, LI Luan, XUE Jian-Tao, XIA Chen-Yu, GUO Bao-Wei, XING Zhi-Peng   

  1. Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-12-12 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-20
  • Contact: HU Ya-Jie
  • Supported by:
    National Nature Science Foundation of China(31701350);National Nature Science Foundation of China(31601246);Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province(202111117065Y);Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL202103);Earmarked Fund for Jiangsu Agriculture Industry Technology System(JATS[2020]432);Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要:

以软米粳稻南粳46和苏香粳100为供试材料, 通过人工气候室设置梯度温度模拟水稻灌浆结实期温度动态递减变化, 设置结实期动态高温、常温和低温3个处理, 以室外温度作为对照(CK), 研究结实期动态温度对软米粳稻产量及其构成、干物质生产和稻米品质的影响。结果表明, 与常温处理相比, 结实期低温处理显著降低水稻产量, 而高温处理并未减产。结实期温度主要通过影响结实率和千粒重而影响产量, 高温处理下千粒重呈减少趋势; 低温处理显著降低了结实率, 但千粒重显著增加。对物质生产而言, 结实期低温处理显著提高茎鞘干物质重及其比例, 降低穗部干物质重及其比例, 减少总干物质积累量。对稻米品质而言, 结实期高温和低温处理均降低精米率和整精米率, 导致加工品质变劣; 高温处理增加垩白粒率和垩白度, 而低温处理减少垩白粒率和垩白度, 但品种间变化不一; 随着结实期温度升高, 稻米蛋白质含量增加, 直链淀粉含量降低; 高温和低温处理下稻米胶稠度均变短和米饭食味值下降。因此, 结实期温度过高或过低都不利于软米粳稻加工和食味品质改善。

关键词: 软米粳稻, 结实期, 动态温度, 产量, 稻米品质

Abstract:

Two soft japonica varieties (Nanjing 46 and Suxiangjing 100) were used as materials. Dynamic diminishing temperatures at grain filling stage were set through artificial climate chamber, that is, high temperature (HT), normal temperature (NT), low temperature (LT), and the outdoor temperature (CK). The effects of dynamic temperature at grain filling stage on yield and its composition, dry matter production and rice quality of soft japonica rice were studied. The results showed that compared with NT treatment, LT treatment significantly reduced rice yield, while HT treatment did not reduce rice yield. The grain filled percentage and 1000-grain weight were affected by temperature at grain filling stage, and 1000-grain weight decreased under HT treatment, LT treatment reduced significantly the grain filled percentage, but increased significantly in 1000-grain weight. For dry matter production, LT treatment increased significantly dry matter weight and its proportion in stem and sheath, decreased dry matter weight and its proportion in panicle, and decreased total dry matter accumulation. For rice quality, both HT and LT treatments reduced milled rice rate and head rice rate, resulting in inferior processing quality. HT treatment increased the chalkiness grain percentage and chalkiness degree, while LT treatment decreased the chalkiness grain percentage and chalkiness degree, but the change was different between two varieties. Protein content increased and amylose content decreased with increasing temperature at grain filling stage. Under both high and low temperature treatments, gel consistency became shorter and rice taste value decreased. Therefore, too high or too low temperature at grain filling stage was not conducive to the improvement of processing and eating quality in soft japonica rice.

Key words: soft japonica rice, grain filling, dynamic temperature, yield, quality

图1

不同温度处理结实期温度变化情况 HT: 高温; NT: 适温; LT: 低温; CK: 室外温度。"

表1

结实期动态温度对软米粳稻产量及其构成的影响"

年份
Year
品种
Variety
处理
Treatment
每盆穗数
Number of
panicles per pot
每穗粒数
Spikelets per
panicle
结实率
Grain filled
percentage (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(g pot-1)
实际产量
Actual yield
(g pot-1)
2018 南粳46
NJ 46
高温HT 26.50 a 106.46 a 73.85 a 26.73 b 55.69 a 55.66 a
常温NT 24.85 a 105.77 a 71.49 a 27.34 b 51.37 ab 41.80 b
低温LT 28.00 a 109.85 a 50.85 c 28.02 a 43.82 b 33.76 c
CK 28.55 a 100.79 a 74.22 a 27.23 b 58.15 a 45.50 b
苏香粳100
SXJ 100
高温HT 27.80 a 95.69 a 85.96 a 29.10 b 66.54 a 59.50 a
常温NT 27.00 a 91.02 a 83.29 a 29.55 ab 60.49 b 48.80 b
低温LT 28.00 a 89.61 a 73.39 c 30.02 a 55.28 b 41.53 c
CK 28.15 a 90.97 a 88.47 a 29.42 ab 66.65 a 50.50 b
2019 南粳46
NJ 46
高温HT 28.60 a 91.03 a 88.66 b 25.08 c 57.89 ab 53.63 a
常温NT 28.80 a 93.37 a 92.77 a 26.14 b 65.19 a 50.17 a
低温LT 27.20 a 95.76 a 74.31 c 27.25 a 52.74 b 38.59 b
CK 28.65 a 93.56 a 92.76 a 26.28 b 65.33 a 52.82 a
苏香粳100
SXJ 100
高温HT 30.30 a 87.75 a 88.08 b 26.92 b 63.05 a 61.50 a
常温NT 28.40 a 86.12 a 90.19 a 27.32 b 60.25 a 56.25 a
低温LT 28.15 a 88.48 a 71.55 c 28.08 a 50.04 b 42.31 b
CK 28.75 a 93.51 a 91.44 a 27.17 b 66.78 a 58.63 a

图2

灌浆结实期动态温度对一次和二次枝梗结实率的影响 缩略词同表1。小写字母表示同一品种处理差异达0.05水平。"

表2

结实期动态温度对软米粳稻成熟期干物质积累及其比例的影响"

年份
Year
品种
Variety
处理
Treatment
总干重
Total dry matter weight (g pot-1)
收获指数Harvest index
(%)
干物质重Dry matter weight (g pot-1) 比例Ratio (%)

Leaf
茎鞘
Stem sheath

Panicle

Leaf
茎鞘
Stem sheath

Panicle
2018 南粳46
NJ 46
高温HT 173.00 a 27.83 a 25.71 a 78.42 b 68.87 a 14.86 a 45.33 b 39.81 a
常温NT 158.35 a 22.83 b 26.87 a 80.08 b 51.40 b 16.97 a 50.57 b 32.46 b
低温LT 166.90 a 17.50 c 26.18 a 99.36 a 41.37 c 15.69 a 59.53 a 24.78 c
CK 171.62 a 22.93 b 26.14 a 82.55 b 62.93 ab 15.23 a 48.10 b 36.67 a
苏香粳100
SXJ 100
高温HT 185.61 a 28.29 a 27.70 a 82.44 ab 75.47 a 14.93 a 44.42 b 40.66 a
常温NT 170.40 a 24.77 b 27.69 a 77.28 b 65.43 b 16.25 a 45.35 b 38.40 a
低温LT 175.21 a 20.50 c 28.25 a 89.53 a 57.43 c 16.12 a 51.10 a 32.78 b
CK 177.39 a 24.63 b 24.93 a 80.66 ab 71.80 ab 14.05 a 45.47 b 40.48 a
2019 南粳46
NJ 46
高温HT 175.50 b 26.13 a 29.28 a 80.75 b 65.47 b 16.69 b 46.01 b 37.30 a
常温NT 185.79 a 23.09 ab 36.25 a 78.08 bc 71.47 a 19.51 a 42.02 c 38.47 a
低温LT 164.58 c 20.05 b 29.35 a 90.74 a 44.49 c 17.83 b 55.13 a 27.03 b
CK 173.51 b 26.03 a 35.70 a 71.11 c 66.70 ab 20.58 a 40.98 c 38.44 a
苏香粳100
SXJ 100
高温HT 172.85 a 30.42 a 28.23 a 82.12 a 62.51 b 16.33 a 47.51 ab 36.16 b
常温NT 176.49 a 27.25 a 26.03 a 79.80 a 70.66 a 14.75 b 45.22 bc 40.03 a
低温LT 161.59 b 22.39 b 28.54 a 80.47 a 52.58 c 17.66 a 49.80 a 32.54 c
CK 179.31 a 27.96 a 25.91 a 78.56 a 74.84 a 14.45 b 43.81 c 41.74 a

表3

结实期动态温度对软米粳稻加工品质和外观品质的影响"

年份
Year
品种
Variety
处理
Treatment
糙米率
Brown rice rate
(%)
精米率
Milling rice rate
(%)
整精米率
Head rice rate
(%)
垩白粒率
Chalky grain percentage
(%)
垩白度
Chalkiness
Degree
(%)
粒长
Grain
length
(mm)
粒宽
Grain width
(mm)
长宽比
Length-width ratio
2018 南粳46
NJ 46
高温HT 79.26 ab 70.32 a 69.92 a 52.08 a 24.26 a 4.34 c 2.65 b 1.64 b
常温NT 77.48 b 69.38 a 68.30 a 24.55 c 6.79 c 4.57 ab 2.75 a 1.66 ab
低温LT 64.57 c 58.18 b 57.50 b 21.11 c 5.55 c 4.62 a 2.73 a 1.69 a
CK 79.98 a 71.58 a 70.27 a 41.51 b 14.21 b 4.51 b 2.67 b 1.69 a
苏香粳100
SXJ 100
高温HT 74.30 b 68.66 ab 64.49 b 52.73 a 20.54 a 4.78 b 2.76 a 1.73 a
常温NT 79.45 a 71.92 a 70.44 a 31.02 c 9.52 c 4.75 b 2.78 a 1.71 a
低温LT 72.07 c 66.43 b 64.15 b 33.62 c 9.06 c 4.86 a 2.80 a 1.74 a
CK 79.26 a 70.32 a 69.92 a 42.88 b 14.36 b 4.55 c 2.72 a 1.67 b
2019 南粳46
NJ 46
高温HT 82.22 a 72.61 b 69.04 b 46.6 a 19.71 a 4.49 c 2.77 b 1.63 c
常温NT 83.28 a 75.17 a 75.10 a 33.56 b 11.38 b 4.68 a 2.79 b 1.69 a
低温LT 80.72 a 64.61 c 60.31c 32.19 b 9.69 bc 4.70 a 2.85 a 1.66 b
CK 83.55 a 75.38 a 75.15 a 30.80 b 8.44 c 4.62 b 2.77 b 1.67 b
苏香粳100
SXJ 100
高温HT 81.96 a 68.24 b 65.36 c 54.83 a 24.31 a 4.69 c 2.82 a 1.68 a
常温NT 83.67 a 75.77 a 75.54 a 50.12 b 16.01 b 4.86 a 2.84 a 1.71 a
低温LT 83.28 a 74.64 a 70.94 b 28.46 c 9.12 c 4.88 a 2.82 a 1.72 a
CK 84.03 a 74.86 a 74.73 a 48.97 b 17.22 b 4.73 b 2.80 a 1.69 a

图3

灌浆结实期动态温度对软米粳稻蛋白质含量的影响 缩略词同表1。小写字母表示同一品种处理差异达0.05水平。"

表4

结实期动态温度对软米粳稻蛋白质含量及其组分的影响(2019)"

品种
Variety
处理
Treatment
总蛋白
Total protein
(%)
蛋白组分绝对含量
Absolute content of protein components
(%)
蛋白组分相对含量
Relative content of protein components
(%)
醇蛋白
Prolamin
球蛋白
Globin
白蛋白
Albumin
谷蛋白
Glutelin
醇蛋白
Prolamin
球蛋白
Globin
白蛋白
Albumin
谷蛋白
Glutelin
南粳46
NJ 46
高温HT 4.987 a 0.101 b 0.490 ab 0.308 a 4.088 a 1.82 b 10.65 a 4.53 b 83.00 a
常温NT 4.327 c 0.119 ab 0.400 b 0.286 b 3.522 b 3.03 a 10.55 a 4.94 b 81.48 ab
低温LT 4.321 c 0.123 a 0.535 a 0.249 c 3.415 b 3.13 a 9.81 a 7.39 a 79.67 b
CK 4.768 b 0.117 ab 0.505 a 0.279 b 3.868 ab 2.27 ab 10.33 a 6.13 a 81.27 b
苏香粳100
SXJ 100
高温HT 4.981 a 0.090 b 0.531 a 0.226 c 4.135 a 2.03 b 9.83 b 6.17 a 81.97 a
常温NT 4.732 b 0.143 a 0.499 ab 0.234 c 3.856 b 2.75 a 9.24 b 6.60 a 81.41 a
低温LT 4.526 c 0.142 a 0.444 b 0.334 a 3.606 c 2.84 a 12.38 a 5.76 b 79.03 b
CK 4.869 ab 0.111 ab 0.503 ab 0.299 b 3.957 ab 2.46 ab 10.58 ab 5.85 b 81.11 a

表5

结实期动态温度对软米粳稻蒸煮食味品质的影响"

年份
Year
品种
Variety
处理
Treatment
直链淀粉含量
Amylose
content (%)
胶稠度
Gel consistency
(mm)
外观
Appearance
黏度
Stickiness
硬度
Hardness
平衡值Balance 食味值
Taste value
2018 南粳46
NJ 46
高温HT 10.5 c 82.5 b 6.40 b 6.03 b 6.20 a 6.10 b 65.67 c
常温NT 12.5 b 88.5 a 7.87 a 7.40 a 5.50 b 7.77 a 77.67 a
低温LT 14.4 a 84.0 b 7.37 ab 6.97 ab 5.97 ab 7.23 a 71.33 b
CK 12.7 b 88.7 a 7.70 a 7.20 a 5.70 b 7.37 a 74.33 ab
苏香粳100
SXJ 100
高温HT 10.0 c 85.7 b 5.63 b 5.47 b 6.70 a 5.53 b 62.33 b
常温NT 11.5 b 89.0 a 7.63 a 7.03 a 6.10 b 7.50 a 75.33 a
低温LT 13.9 a 85.5 b 5.60 a 5.63 b 6.93 a 4.77 b 59.33 b
CK 12.0 ab 89.7 a 5.00 a 7.63 a 6.30 a 4.77 b 73.00 a
2019 南粳46
NJ 46
高温HT 12.7 b 80.0 b 6.80 b 5.63 c 6.37 ab 6.13 c 67.67 bc
常温NT 12.5 b 92.5 a 6.23 c 5.83 bc 6.57 a 6.03 c 69.33 b
低温LT 14.4 a 89.5 b 6.93 b 6.03 b 6.23 b 6.50 b 66.67 c
CK 10.5 c 92.5 a 7.67 a 8.10 a 6.17 b 7.67 a 77.33 a
苏香粳100
SXJ 100
高温HT 12.0 ab 84.5 b 8.30 a 7.27 ab 5.67 b 7.73 a 71.33 b
常温NT 11.5 b 93.0 a 6.80 b 7.00 b 6.47 a 6.83 b 75.67 a
低温LT 13.9 a 89.5 b 6.30 c 5.97 c 6.67 a 6.07 c 66.67 b
CK 10.0 b 91.5 a 7.90 a 7.43 a 5.57 b 7.80 a 78.67 a
[1] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52: 909-920.
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen T, Zhu Z, Zhao Q Y, Yao S, Liang W H, Lu K, Wang C L. Eating quality and physicochemical properties in Nanjing rice varieties. Sci Agric Sin, 2019, 52: 909-920. (in Chinese with English abstract)
[2] Jin L, Lu Y, Shao Y F, Zhang G, Xiao P, Shen S Q, Corke H, Bao J S. Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci, 2010, 51: 159-164.
doi: 10.1016/j.jcs.2009.11.007
[3] Ahmed N, Maekawa M, Tetlow I J. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice. Aust J Agric Res, 2008, 59: 599-604.
doi: 10.1071/AR07340
[4] Huang M, Zhang W X, Jiang L G, Zou Y B. Impact of temperature changes on early-rice productivity in a subtropical environment of China. Field Crops Res, 2013, 146: 10-15.
doi: 10.1016/j.fcr.2013.03.007
[5] Song X Y, Du Y X, Song X N, Zhao Q Z. Effect of high night temperature during grain filling on amyloplast development and grain quality in japonica rice. Cereal Chem, 2013, 90: 114-119.
doi: 10.1094/CCHEM-01-12-0010-R
[6] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.82044
[7] Zhang S, Tao F L, Zhang Z. Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009. Field Crops Res, 2016, 189: 43-50.
doi: 10.1016/j.fcr.2016.02.008
[8] Lü G H, Wu Y F, Bai W B, Ma B, Wang C Y, Song J Q. Influence of high temperature stress on net photosynthesis, dry matter partitioning and rice grain yield at flowering and grain filling stages. J Integr Agric, 2013, 12: 603-609.
doi: 10.1016/S2095-3119(13)60278-6
[9] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132: 28-41.
doi: 10.1016/j.envexpbot.2016.08.006
[10] 金正勋, 杨静, 钱春荣, 刘海英, 金学泳, 秋太权. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学, 2005, 19: 377-380.
Jin Z X, Yang J, Qian C R, Liu H Y, Jin X Y, Qiu T Q. Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality. Chin J Rice Sci, 2005, 19: 377-380. (in Chinese with English abstract)
[11] 韦克苏. 花后高温对水稻胚乳淀粉合成与蛋白积累的影响机理. 浙江大学博士学位论文, 浙江杭州, 2012.
Wei K S. Effect of High Temperature on Starch Synthesis and Protein Accumulation in Rice Endosperm at Filling Stage. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012. (in Chinese with English abstract)
[12] Wu Y C, Chang S J, Lur H S. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice-Pon-Lai rice. Plant Prod Sci, 2016, 19: 145-153.
doi: 10.1080/1343943X.2015.1128091
[13] 龚金龙, 张洪程, 胡雅杰, 龙厚元, 常勇, 王艳, 邢志鹏, 霍中洋. 灌浆结实期温度对水稻产量和品质形成的影响. 生态学杂志, 2013, 32: 482-491.
Gong J L, Zhang H C, Hu Y J, Long H Y, Chang Y, Wang Y, Xing Z P, Huo Z Y. Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality. Chin J Ecol, 2013, 32: 482-491. (in Chinese with English abstract)
[14] 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展. 中国水稻科学, 2012, 26: 393-400.
Duan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism. Chin J Rice Sci, 2012, 26: 393-400. (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2012.04.002
[15] 蔡志欢, 张桂莲. 水稻低温冷害研究进展. 作物研究, 2018, 32(3): 249-255.
Cai Z H, Zhang G L. Advances in studies on chilling injury of rice. Crop Res, 2018, 32(3): 249-255. (in Chinese)
[16] 宋有金, 吴超, 李子煜, 唐设, 李刚华, 王绍华, 丁艳锋. 水稻产量对生殖生长阶段不同时期高温的响应差异. 中国水稻科学, 2021, 35: 177-186.
doi: 10.16819/j.1001-7216.2021.0203
Song Y J, Wu C, Li Z Y, Tang S, Li G H, Wang S H, Ding Y F. Differential responses of grain yields to high temperature in different stages of reproductive growth in rice. Chin J Rice Sci, 2021, 35: 177-186. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.0203
[17] 张明静, 韩笑, 胡雪, 臧倩, 许轲, 蒋敏, 庄恒扬, 黄丽芬. 不同种植方式下温度升高对水稻产量及同化物转运的影响. 中国农业科学, 2021, 54: 1537-1552.
Zhang M J, Han X, Hu X, Zang Q, Xu K, Jiang M, Zhuang H Y, Huang L F. Effects of elevated temperature on rice yield and assimilate translocation under different planting patterns. Sci Agric Sin, 2021, 54: 1537-1552. (in Chinese with English abstract)
[18] 冯敏玉, 祝必琴, 雷俊, 朱建章, 刘文英. 南昌高温逼熟发生规律及其对早稻产量的影响. 中国农业气象, 2014, 35: 287-292.
Feng M Y, Zhu B Q, Lei J, Zhu J Z, Liu W Y. Characteristics of high-temperature forced maturity disaster and its impacts on early rice in Nanchang area. Chin J Agron, 2014, 35: 287-292. (in Chinese with English abstract)
[19] 张诚信. 灌浆结实期低温弱光复合胁迫对水稻产量和品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2020.
Zhang C X. Combined Effects of Low Temperature and Weak Light at Grain-filling Stage on Rice Yield and Grain Quality. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020. (in Chinese with English abstract)
[20] Jagadish S V K, Murty M V R, Quick W P. Rice responses to rising temperatures—challenges, perspectives and future directions. Plant Cell Environ, 2015, 38: 1686-1698.
doi: 10.1111/pce.12430
[21] Chen Y, Wang M, Ouwerkerk P B F. Molecular and environmental factors determining grain quality in rice. Food Energy Secur, 2012, 1: 111-132.
doi: 10.1002/fes3.11
[22] 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应. 农业环境科学学报, 2020, 39: 822-833.
Wang Y X, Yang L X. Response of rice quality to major climate change factors. J Agro-Environ Sci, 2020, 39: 822-833. (in Chinese with English abstract)
[23] 张桂莲, 廖斌, 李博, 蔡志欢. 花后高温对稻米品质及胚乳淀粉粒结构的影响. 中国农学通报, 2016, 32(9): 10-14.
Zhang G L, Liao B, Li B, Cai Z H. Effect of high temperature after anthesis on rice quality and starch granule structure of endosperm. Chin Agric Sci Bull, 2016, 32(9): 10-14. (in Chinese with English abstract)
[24] 林洪鑫, 胡启锋, 肖宇龙, 余传源, 何虎, 黄国娟. 寒露风对双季晚稻品种产量构成和品质的影响. 江西农业学报, 2016, 28(5): 20-23.
Lin H X, Hu Q F, Xiao Y L, Yu C Y, He H, Huang G J. Effect of cold dew wind on quality, yield and yield components of double cropping late rice varieties. Acta Agric Jiangxi, 2016, 28(5): 20-23. (in Chinese with English abstract)
[25] Chen C, Huang J L, Zhu L Y, Shah F, Nie L X, Cui K H, Peng S B. Varietal difference in the response of rice chalkiness to temperature during ripening phase across different sowing dates. Field Crops Res, 2013, 151: 85-91.
doi: 10.1016/j.fcr.2013.07.016
[26] Dou Z, Tang S, Chen W Z, Zhang H X, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Zhang H C, Ding Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J Cereal Sci, 2018, 81: 118-126.
doi: 10.1016/j.jcs.2018.04.004
[27] 高焕晔, 王三根, 宗学凤, 腾中华, 赵芳明, 刘照. 灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响. 中国生态农业学报, 2012, 20: 40-47.
Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage. Chin J Eco-Agric, 2012, 20: 40-47. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00040
[28] Hu Y J, Li L, Tian J Y, Zhang C X, Wang J, Yu E W, Xing Z P, Guo B W, Wei H Y, Huo Z Y, Zhang H C. Effects of dynamic low temperature during the grain filling stage on starch morphological structure, physicochemical properties, and eating quality of soft japonica rice. Cereal Chem, 2020, 97: 540-550.
doi: 10.1002/cche.10268
[29] Okpala N E, Potcho M P, An T Y, Ahator S D, Duan L X, Tang X R. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice. J Cereal Sci, 2020, 93: 102980.
[30] 徐铨, 唐亮, 徐凡, 福嶌阳, 黄瑞冬, 陈温福, 徐正进. 粳稻食味品质改良研究现状与展望. 作物学报, 2013, 39: 961-968.
Xu Q, Tang L, Xu F, Fukushima A, Huang R D, Chen W F, Xu Z J. Research advances and prospects of eating quality improvement in japonica rice (Oryza sativa L.). Acta Agron Sin, 2013, 39: 961-968. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00961
[31] Hu Y J, Xue J T, Li L, Cong S M, Yu E W, Xu K, Zhang H C. Influence of dynamic high temperature during grain filling on starch fine structure and functional properties of semi-waxy japonica rice. J Cereal Sci, 2021, 101: 103319.
[1] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[2] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机理[J]. 作物学报, 2023, 49(1): 286-294.
[3] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[4] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[5] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[6] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[7] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[8] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[9] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[10] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[11] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[12] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[13] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[14] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[15] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .