欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 488-496.doi: 10.3724/SP.J.1006.2022.04272

• 耕作栽培·生理生化 • 上一篇    下一篇

内蒙古地区甜菜临界氮浓度稀释模型的构建及应用

张加康1,3(), 李斐1,*(), 史树德2,*(), 杨海波1   

  1. 1内蒙古自治区土壤质量与养分资源重点实验室 / 内蒙古农业大学草原与资源环境学院, 内蒙古呼和浩特 010018
    2内蒙古农业大学农学院, 内蒙古呼和浩特 010019
    3内蒙古自治区兴安盟植保植检站, 内蒙古乌兰浩特 137400
  • 收稿日期:2020-12-14 接受日期:2021-07-12 出版日期:2022-02-12 网络出版日期:2021-08-09
  • 通讯作者: 李斐,史树德
  • 作者简介:E-mail: zhangjiakang940911@163.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS170702);第十批内蒙古自治区草原英才培养类个人(CYYC10043);内蒙古自治区高等学校青年科技英才支持计划项目资助(NJYT-18-A08)

Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China

ZHANG Jia-Kang1,3(), LI Fei1,*(), SHI Shu-De2,*(), YANG Hai-Bo1   

  1. 1Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources / College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    3Xing’an League, Inner Mongolia Autonomous Region Plant Protection and Plant Inspection Station, Ulanhot 137400, Inner Mongolia, China;
  • Received:2020-12-14 Accepted:2021-07-12 Published:2022-02-12 Published online:2021-08-09
  • Contact: LI Fei,SHI Shu-De
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS170702);the 10th Batch of Grassland Talents Project of Inner Mongolia Autonomous Region(CYYC10043);the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-18-A08)

摘要:

甜菜是我国两大主要糖料作物之一, 然而氮素过量或者不足不仅会影响甜菜产量和含糖量, 而且过量的氮素还会造成一定的环境风险, 如何判别甜菜的氮素营养在一个合理的范围对于保障甜菜产量、品质和减少环境风险具有重要意义。临界氮浓度稀释曲线是作物氮素营养诊断的基础, 本研究的主要目的是构建我国甜菜临界氮浓度稀释曲线模型, 并利用相应的氮素营养指数进行甜菜氮素营养诊断。研究于2017—2018年在内蒙古呼和浩特市和赤峰市进行了2个甜菜品种、不同施氮量的田间试验。在甜菜的苗期、叶丛生长期、块根膨大期、糖分积累期和收获期5个关键时期进行地上部叶片和地下部块根取样测定生物量和氮浓度, 并计算出甜菜全株生物量和全株氮浓度。根据全株生物量和全株氮浓度建立临界氮浓度稀释模型和相应的氮素营养指数。结果表明, 甜菜地上部生物量和地上部氮浓度以及全株生物量和全株氮浓度都是随着生育时期的推进呈现出负幂函数关系, 基于地上部生物量和地上部氮浓度建立的临界氮浓度稀释曲线决定系数平均在0.45, 而以全株生物量和全株氮浓度建立临界氮浓度稀释曲线决定系数平均在0.94, 较前者有显著提高。以全株生物量和全株氮浓度建立临界氮浓度稀释模型更为合理, 且受品种影响较小, 甜菜品种KWS9167和KWS1676的共用临界氮浓度稀释曲线决定系数达0.94, 构建的氮素营养模型可以进行甜菜氮素营养诊断。我国北方地区主要甜菜品种临界氮浓度稀释模型为Nc=4.23W -0.49, 基于该模型计算的KWS9167和KWS1676合理施氮量分别为160 kg N hm -2和180 kg N hm -2左右。

关键词: 甜菜, 生物量, 氮浓度, 临界氮稀释曲线, 氮营养指数

Abstract:

Sugar beet is one of the two major sugar crops in China. However, both nitrogen sufficiency and deficiency will affect the yield and sugar content in sugar beet, and excessive nitrogen will cause environmental risks. Judging nitrogen nutrition of sugar beet in a reasonable range is of great significance for ensuring the yield, quality and reducing environmental risks of sugar beet. The critical nitrogen concentration dilution curve is the basis of crop nitrogen nutrition diagnosis. The objective of this present study was establishing the dilution curve model of the critical nitrogen concentration of sugar beet in China and to diagnose the nitrogen nutrition of sugar beet by using the corresponding nitrogen nutrient index. Four experiments with different N rates for two cultivars of sugar beet were conducted in Inner Mongolia from 2017 to 2018. The above-ground biomass and under-ground tubers were sampled and their nitrogen concentration was determined at seedling, leaf cluster growth, tuber bulking, sugar accumulation, and harvest stages. The total plant biomass and nitrogen concentration were calculated. Based on the calculation, the critical nitrogen concentration dilution model and the corresponding nitrogen nutrient index were established. The results indicated that the negative power relationship between the above-ground biomass and nitrogen concentration was observed. The determination coefficient (R 2) for the relationship was 0.45 on average. The R 2 for the negative power relationship between total plant biomass and nitrogen concentration was 0.94 on average, which was higher than the relationship between the above-ground biomass and nitrogen concentration. It was more reasonable to establish a critical nitrogen concentration dilution model based on the total plant biomass and nitrogen concentration, which was less affected by the cultivars. The R 2 for the integrated critical nitrogen concentration dilution curve of sugar beet varieties KWS9167 and KWS1676 reached 0.94. The constructed nitrogen nutrition model can be used to estimate the plant nitrogen status in sugar beet. The critical nitrogen concentration dilution model for the main sugar beet varieties in Northern China was Nc = 4.23W -0.49. The optimized nitrogen rate of KWS9167 and KWS1676 based on the model was about 160 kg hm -2 and 180 kg hm -2, respectively.

Key words: sugar beet, biomass, nitrogen concentration, critical nitrogen dilution curve, nitrogen nutrition index

表1

试验区土壤基础理化性质"

年份
Year
地点
Site
有机质
Organic matter
(g kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
全氮
Total N
(g kg-1)
pH
2017 内蒙古农业大学教学农场
Teaching Farm of Inner Mongolia Agricultural University
24.6 48.0 162.0 1.5 8.6
2018 赤峰市林东镇
Lindong Town, Chifeng City
13.0 12.5 114.2 0.7 8.2
2018 内蒙古农业大学教学农场
Teaching Farm of Inner Mongolia Agricultural University
36.2 7.9 240.0 1.7 8.3

图1

两品种甜菜不同氮处理收获时总生物量和总氮浓度变化 大写字母表示甜菜品种KWS1676处理间差异显著(P < 0.05), 小写字母表示甜菜品种KWS9167处理间差异显著(P < 0.05)。N0、N15、N32、N50、N76、N100、N150、N163、N217分别表示施氮量为0、15、32、50、76、100、150、163和217 kg N hm-2。"

图2

基于地上部生物量和氮浓度的甜菜临界氮稀释曲线"

图3

基于全株生物量和氮浓度的甜菜临界氮稀释曲线"

图4

甜菜生物量和氮浓度关系散点图"

图5

不同品种甜菜共用临界氮浓度稀释曲线"

图6

甜菜临界氮浓度稀释曲线验证 处理同图1。"

图7

两品种甜菜氮素营养诊断 处理同图1。"

图8

国内外甜菜临界氮浓度稀释曲线对比"

[1] 羽凡. 中国食糖产业现状. 福建轻纺, 2014, ( 2):21-23.
Yu F. The status quo of China’s sugar industry. Fujian Textile, 2014, ( 2):21-23 (in Chinese with English abstract).
[2] Mohammad A D, Mohammad A. Effect of the nitrogen rate and weed control treatments on the quantitative and qualitative yield of sugar beet. Russ Agric Sci, 2019,45:423-429.
[3] 陈艺文, 李用财, 余凌羿, 王叶琼, 倪洪涛. 中国三大主产区甜菜糖业发展分析. 中国糖料, 2017,39(4):74-76.
Chen Y W, Li Y C, Yu L Y, Wang Y Q, Ni H T. Analysis on the development of sugar beet industry in China's three main producing areas. China Sugar, 2017,39(4):74-76 (in Chinese with English abstract).
[4] 闫威. 覆膜方式及氮密耦合对旱作甜菜生理性能的影响. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2019.
Yan W. The Effect of Film Mulching Method and Nitrogen Density Coupling on the Physiological Performance of Dry-farming Sugar Beet. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2019 (in Chinese with English abstract).
[5] 高宝军. 内蒙古甜菜产业发展及对策研究. 中国农业科学院硕士学位论文, 北京, 2012.
Gao B J. Research on the Development and Countermeasures of Sugar Beet Industry in Inner Mongolia. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with English abstract).
[6] 李满红, 王远斌, 银赛, 赵国辉, 邵科. 依靠科技创新助推糖业发展——“十三五”时期内蒙古甜菜糖业步入健康发展快车道. 中国糖料, 2016,38(5):69-72.
Li M H, Wang Y B, Yin S, Zhao G H, Shao K. Relying on scientific and technological innovation to boost the development of sugar industry—Inner Mongolia's sugar beet and sugar industry has entered the fast lane of healthy development during the “13th Five-Year Plan” period. China Sugar, 2016,38(5):69-72 (in Chinese with English abstract).
[7] 王申莹, 胡志超, 张会娟, 吴惠昌, 彭宝良, 顾峰玮. 国内外甜菜生产与机械化收获分析. 中国农机化学报, 2013,34(3):20-25.
Wang S Y, Hu Z C, Zhang H J, Wu H C, Peng B L, Gu F W. Analysis of sugar beet production and mechanized harvesting at home and abroad. Chin J Agric Mach Chem, 2013,34(3):20-25 (in Chinese with English abstract).
[8] 韩秉进, 朱向明. 我国甜菜生产发展历程及现状分析. 土壤与作物, 2016,5(2):91-95.
Han B J, Zhu X M. Analysis of the development process and current situation of sugar beet production in my country. Soil Crops, 2016,5(2):91-95 (in Chinese with English abstract).
[9] 费聪. 氮素运筹对露播滴灌甜菜产量和品质的影响. 石河子大学硕士学位论文, 新疆石河子, 2016.
Fei C. The Effect of Nitrogen Management on the Yield and Quality of Sugar Beet in Open Drip Irrigation. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2012 (in Chinese with English abstract).
[10] Carter J N, Traveller D J. Effect of time and amount of nitrogen uptake on sugar beet growth and yield. Agron J, 1981,73:665-671.
[11] 张朝春, 江荣风, 张福锁, 王兴仁. 氮磷钾肥对马铃薯营养状况及块茎产量的影响. 中国农学通报, 2005,21(9):279-283.
Zhang C C, Jiang R F, Zhang F S, Wang X G. Effects of nitrogen, phosphorus and potassium fertilizers on potato nutritional status and tuber yield. Chin Agric Sci Bull, 2005,21(9):279-283 (in Chinese with English abstract).
[12] Tarkalson D D, Bjorneberg D L, Camp S, Dean G, Foote P. Improving nitrogen management in pacific northwest sugarbeet production. J Sugar Beet Res, 2016,53:14-36.
[13] Ata-Ul-Karim S T, Liu X J, Lu Z Z, Yuan Z F, Zhu Y, Cao W X. In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res, 2016,195:1-8.
[14] 李康活, 杨观宋, 莫曼红, 陈炜钦, 潘玉燊, 陈春媚, 张庆龙, 王铁安. 水稻够苗期后植株吸氮量简易诊断方法及其预测. 广东农业科学, 1987,23(5):10-15.
Li K H, Yang G S, Mo M H, Chen W Q, Pan Y S, Chen C M, Zhang Q L, Wang T A. Simple diagnosis method and prediction of nitrogen uptake by rice plants after sufficient seedling stage. Guangdong Agric Sci, 1987,23(5):10-15 (in Chinese with English abstract).
[15] 贾良良, 陈新平, 张福锁. 叶绿素仪与植株硝酸盐浓度测试对冬小麦氮营养诊断准确性的比较研究. 华北农学报, 2007,22(6):157-160.
Jia L L, Chen X P, Zhang F S. Comparison of chlorophyll meter and plant nitrate concentration test on the diagnostic accuracy of winter wheat nitrogen nutrition. North China Agric J, 2007,22(6):157-160 (in Chinese with English abstract).
[16] 杨海波, 高兴, 黄绍福, 张加康, 杨柳, 李斐. 基于卫星波段的马铃薯植株氮素含量估测. 光谱学与光谱分析, 2019,23(9):157-160.
Yang H B, Gao X, Huang S F, Zhang J K, Yang L, Li F. Estimation of nitrogen content in potato plants based on satellite band. Spectr Spectr Anal, 2019,23(9):157-160 (in Chinese with English abstract).
[17] Greenwood D J, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson J J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot, 1990,66:425-436.
[18] 马晓晶, 张小涛, 黄玉芳, 叶优良. 小麦叶片临界氮浓度稀释曲线的建立与应用. 植物生理学报, 2017,53:1313-1321.
Ma X J, Zhang X T, Huang Y F, Ye Y L. Establishment and application of the critical nitrogen concentration dilution curve of wheat leaves. Chin J Plant Physiol, 2017,53:1313-1321 (in Chinese with English abstract).
[19] Wang X L, Ye T Y, Ata-Ul-Karim S T, Yan Z, Liu L, Cao W, Liang T. Development of a critical nitrogen dilution curve based on leaf area duration in wheat. Front Plant Sci, 2017,8:1517-1527.
[20] 陆震洲. 长江下游稻作区水稻临界氮浓度和光谱指数模型研究. 南京农业大学硕士学位论文, 江苏南京, 2015.
Lu Z Z. Research on Critical Nitrogen Concentration and Spectral Index Model of Rice in the Rice-growing Area of the Lower Yangtze River. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[21] 贺志远. 双季稻临界氮浓度稀释模型的构建及氮素诊断研究. 南京农业大学硕士学位论文, 江苏南京, 2016.
He Z Y. Construction of a Critical Nitrogen Concentration Dilution Model for Double-cropping Rice and Research on Nitrogen Diagnosis. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016 (in Chinese with English abstract).
[22] Ata-Ul-Karim S T, Liu X J, Lu Z Z, Yuan Z, Zhu Y, Cao W. In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res, 2016,195:1-8.
[23] Ata-Ul-Karim S T, Zhu Y, Cao Q, Rehmani M, Cao W, Tang L. In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. Eur J Agron, 2017,90:139-151.
[24] Liu X J, Zhang K, Zhang Z Y, Qiang C, Lyu Z, Yuan Z. Canopy chlorophyll density based index for estimating nitrogen status and predicting grain yield in rice. Front Plant Sci, 2017,8:1829-1840.
[25] Ata-Ul-Karim S T, Liu X, Lu Z, Zheng H, Cao W, Zhu Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res, 2017,201:32-40.
[26] He Z Y, Qiu X L, Ata-Ul-Karim S T, Li Y, Liu X, Qiang C. Development of a critical nitrogen dilution curve of double cropping rice in South China. Front Plant Sci, 2017,8:638-651.
[27] Zhao B, Ata-Ul-Karim S T, Liu Z D, Ning D, Duan A. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017,208:60-68.
[28] Zhao B, Duan A W, Ata-Ul-Karim S T, Liu Z, Chen Z, Gong Z. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur J Agron, 2018,93:113-125.
[29] Zhao B, Ata-Ul-Karim S T, Duan A W, Liu Z, Wang X, Xiao J. Determination of critical nitrogen concentration and dilution curve based on leaf area index for summer maize. Field Crops Res, 2018,228:195-203.
[30] Saki T, Yomi M, Rao-Rajashekhar B K. Critical nitrogen content and nitrogen nutrition index for sweetpotato crop. J Plant Nutr, 2019,42:1750-1759.
[31] de Oliveira E C A, de Castro Gava G J, Trivelin P C O, Otto R, Junqueira-Franco H C. Determining a critical nitrogen dilution curve for sugarcane. J Plant Nutr Soil Sci, 2013,176:712-723.
[32] 张加康, 李斐, 李跃进, 杨海波, 贾禹泽, 刘玉峰, 石焱. 基于全株生物量和全株氮浓度的马铃薯氮临界浓度稀释模型的构建及验证. 植物营养与肥料学报, 2020,26:1691-1701.
Zhang J K, Li F, Li Y J, Yang H B, Jia Y Z, Liu Y F, Shi Y. Construction and verification of potato nitrogen critical concentration dilution model based on whole plant biomass and whole plant nitrogen concentration. J Plant Nutr Fert, 2020,26:1691-1701 (in Chinese with English abstract).
[33] Chakwizira E, Ruiter J M, Teixeira E. Evaluating the critical nitrogen dilution curve for storage root crops. Field Crops Res, 2016,199:21-30.
[34] NY/T 2419-2013. 植株全氮含量测定自动定氮仪法. 北京: 中国农业出版社, 2014.
NY/T 2419-2013. Automatic Nitrogen Determination Method for the Determination of Total Plant Nitrogen Content. Beijing: China Agriculture Press, 2014 (in Chinese).
[35] Abdallah F B, Olivier M, Goffart J P, Minet O. Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Res, 2016,59:241-258.
[36] Lemaire G, Gastal F, Cruz P. Relationships Between Plant-N, Plant Mass and Relative Growth Rate for C3 and C4 Crop. Paris: Proceeding First ESA Congress, 1990. pp 1-5.
[37] Yin M H, Li Y N, Xu L Q, Shen S L, Fang H. Nutrition diagnosis for nitrogen in winter wheat based on critical nitrogen dilution curves. Crop Sci, 2018,58:416-420.
[38] Huang S Y, Miao Y X, Cao Q, Yao Y K, Zhao G G, Yu W F, Shen J N, Yu K, Georg B. A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere, 2018,28:814-822.
[39] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020,46:290-299.
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Study on the critical nitrogen dilution curve and nitrogen nutrition diagnosis of corn under drip irrigation. Acta Agron Sin, 2020,46:290-299 (in Chinese with English abstract).
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[3] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计[J]. 作物学报, 2021, 47(3): 530-545.
[4] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[5] 杜宇笑, 李鑫格, 王雪, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 不同产量水平稻茬小麦氮素需求特征研究[J]. 作物学报, 2020, 46(11): 1780-1789.
[6] 付江鹏,贺正,贾彪,刘慧芳,李振洲,刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(02): 290-299.
[7] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[8] 茹晓雅,李广,陈国鹏,张统帅,闫丽娟. 不同降水年型下水氮调控对小麦产量及生物量的影响[J]. 作物学报, 2019, 45(11): 1725-1734.
[9] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[10] 武海霞,郭丽丽,郝立华,张浩,王清涛,程东娟,彭正萍,李菲,张茜茜,李树彬,徐明,郑云普. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报, 2018, 44(10): 1570-1576.
[11] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[12] 陈昱利,杨平,张文宇,张伟欣,诸叶平,李世娟,巩法江,毕海滨,岳霆,曹宏鑫. 基于生物量的冬小麦穗部主要形态参数模型[J]. 作物学报, 2017, 43(03): 399-406.
[13] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[14] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[15] 岳松华,刘春雨,黄玉芳,叶优良*. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立[J]. 作物学报, 2016, 42(06): 909-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!