欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 478-487.doi: 10.3724/SP.J.1006.2022.11026

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用

陈新宜1(), 宋宇航1, 张孟寒1, 李小艳1, 李华1, 汪月霞1,*(), 齐学礼2,*()   

  1. 1河南农业大学生命科学学院, 河南郑州 450002
    2河南省作物分子育种研究院, 河南郑州 450002
  • 收稿日期:2021-03-12 接受日期:2021-07-12 出版日期:2022-02-12 网络出版日期:2021-08-03
  • 通讯作者: 汪月霞,齐学礼
  • 作者简介:E-mail: xychen3988@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(U1704103);国家重点研发计划项目资助(2015CB150106)

Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid

CHEN Xin-Yi1(), SONG Yu-Hang1, ZHANG Meng-Han1, LI Xiao-Yan1, LI Hua1, WANG Yue-Xia1,*(), QI Xue-Li2,*()   

  1. 1College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2021-03-12 Accepted:2021-07-12 Published:2022-02-12 Published online:2021-08-03
  • Contact: WANG Yue-Xia,QI Xue-Li
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(U1704103);the National Key Research and Development Program of China(2015CB150106)

摘要:

黄淮主产区冬小麦生育期干旱灾害发生频繁, 造成小麦苗期严重光合生理伤害。为探讨不同小麦品种光合特性对干旱胁迫的响应, 以百农207, 周麦18以及小麦新品种郑麦1860为材料, 研究了干旱胁迫对不同品种小麦幼苗光合生理、抗氧化物酶、相关基因表达水平的影响以及外源ALA的干旱缓解作用。研究结果表明, 干旱胁迫下郑麦1860具有较高的根干重和根冠比, 与周麦18相比, 抗旱能力较强的郑麦1860和百农207叶绿素含量的下降幅度、MDA含量的增加幅度、叶绿素荧光参数和光合作用参数的下降幅度相对较低, 但SOD和CAT酶活性的增加幅度相对较大。同时, 干旱胁迫显著增加了CATSOD-Cu/ZnMnSODFeSOD抗氧化酶相关基因的转录表达水平, 且增加程度与小麦的抗旱能力密切相关。外源ALA预处理能够通过对CATSOD-Cu/ZnMnSOD的转录诱导, 进一步提高干旱胁迫下SOD和CAT酶的活性, 降低膜脂过氧化损伤程度, 同时提高ATP酶的活性, 缓解干旱对小麦光合生理的伤害。此外, 本研究首次发现, 小麦叶绿体光合机构相关psb28基因转录表达的维持也与不同品种的抗旱能力有一定联系, 且受外源ALA预处理的显著诱导。本研究结果显示, 干旱胁迫下小麦抗氧化酶及叶绿体光合作用相关基因的转录表达调控, 与不同品种的抗旱能力以及外源ALA的调节作用密切相关。

关键词: 小麦, 干旱, 品种, 基因表达, 5-氨基乙酰丙酸

Abstract:

Drought stress happens frequently in Huang-Huai winter wheat planted area, causing severe injury on photosynthetic apparatus of wheat seedlings. To characterize the traits of photosynthetic physiology in different wheat cultivars in response to water deficit, the newly in-lab cultivated Zhengmai 1860, as well as Bainong 207 and Zhoumai 18 were used as materials in this study. We explored the effects of water deficit on photosynthetic traits, antioxidant enzyme activities, and related gene transcription of seedlings in different cultivars, as well as the drought alleviation effect of exogenous application of 5-aminolevulinic acid (ALA). The results were as follows: Zhengmai 1860 had comparatively higher root dry weight and root shoot ratio than the other two cultivars under drought stress. Compared to Zhoumai 18, the drought resistant cultivars (Zhengmai 1860 and Bainong 207) had lower reduction in chlorophyll content and increased MDA content, enhanced the activities of SOD and CAT, and lowered reductions in chlorophyll fluorescence parameters and the photosynthetic parameters. Meanwhile, water deficit obviously improved the transcriptions of antioxidant enzyme-encoded genes CAT, SOD-Cu/Zn, MnSO, and FeSOD, which showed a correlation between the increasing level with the drought resistant ability. The exogenous pretreatment of ALA further enhanced the activities of SOD and CAT to lower the damage to membrane lipid peroxidation by inducing the transcriptions of CAT, SOD-Cu/Zn, and MnSOD. ATPase activity was also increased to alleviate water deficit on the damage to photosynthetic physiology. Moreover, we found for the first time that the transcriptional maintenance of chloroplast photosynthetic apparatus related psb28 gene had a correlation with the drought resistance between different wheat cultivars, which was also significantly induced by the exogenously pretreated ALA. These results in this study proposed that the transcriptions of antioxidant enzymes and chloroplast photosynthesis related genes had a close relationship with the drought resistant ability of wheat and the alleviation effect of exogenous ALA in wheat.

Key words: wheat, water deficit, cultivar, gene expression, 5-aminolevulinic acid

表1

实时荧光定量PCR引物序列"

基因名称
Gene name
基因功能
Gene function
引物序列
Primer sequence (5′-3′)
参考文献
Reference
SOD-Cu/Zn 叶绿体Cu和Zn超氧化物歧化酶
Chloroplast Cu/Zn superoxide dismutase
F: CGCTCAGAGCCTCCTCTTT
R: CTCCTGGGGTGGAGACAAT
[19]
FeSOD 叶绿体Fe超氧化物歧化酶
Chloroplast Fe superoxide dismutase
F: GTCCTACTACGGCCTCACCA
R: ACGTAGTCCTGCTGGTGCTT
[20]
MnSOD 线粒体Mn超氧化物歧化酶
Mitochondrion Mn superoxide dismutase
F: CAGAGGGTGCTGCTTTACAA
R: GGTCACAAGAGGGTCCTGAT
[20]
CAT 过氧化氢酶
Catalase
F: CCATGAGATCAAGGCCATCT
R: ATCTTACATGCTCGGCTTGG
[19]
psb28 叶绿体Psb28蛋白
Chloroplast Psb28 protein
F: AACTGTCGAGCTGGTAACGG
R: ACCGGTTTTCCTCAGTTCGT
本研究设计
Design in this study
Actin β-actin F: GGAATCCATGAGACCACCTAC
R: GACCCAGACAACTCGCAAC
[21]

图1

干旱及外源ALA处理对不同抗旱性小麦外观形态和生物量的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

图2

干旱及外源ALA处理对不同抗旱性小麦叶绿素、MDA含量以及抗氧化酶活性的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

图3

干旱及外源ALA处理对不同抗旱性小麦叶绿素荧光参数和光合参数的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

图4

干旱及外源ALA处理对不同抗旱性小麦ATP酶活性的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

图5

干旱及外源ALA处理对不同抗旱性小麦抗氧化物酶基因转录表达的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

图6

干旱及外源ALA处理对不同抗旱性小麦叶绿体psb28基因表达的影响 数据为3次重复的平均值±标准差, 图中不同字母表示品种内处理间有显著差异(P < 0.05)。CK: 正常供水; Drought: 干旱处理; D+A: 干旱处理之前用外源ALA预处理。"

[1] Daryanto S, Wang L, Jacinthe P A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manage, 2017,179:18-33.
[2] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018,44:988-999.
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018,44:988-999 (in Chinese with English abstract).
[3] Rao D E, Chaitanya K. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant, 2016,60:201-218.
[4] Zargar S M, Gupta N, Nazir M, Mahajan R, Malik F A, Sofi N R, Shikari A B, Salgotra R. Impact of drought on photosynthesis: molecular perspective. Plant Gene, 2017,11:154-159.
[5] 秦娜, 许为钢, 齐学礼, 赵明忠, 张磊. 干旱胁迫下郑麦7698的抗旱性能及光合特性分析. 河南农业科学, 2018,47(2):7-11.
Qin N, Xu W G, Qi X L, Zhao M Z, Zhang L. Analysis of drought resistance and photosynthetic characteristics of Zhengmai 7698 under drought stress. J Henan Agric Sci, 2018,47(2):7-11 (in Chinese with English abstract).
[6] Ma J, Lyu C, Xu M, Chen G, Lyu C, Gao Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Poll Res, 2016,23:1768-1778.
[7] Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the Cyanobacterium synechocystis sp. PCC 6803. Plant Physiol, 2009,149:1076-1086.
[8] Sakata S, Mizusawa N, Kubota-Kawai H, Sakurai I, Wada H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim Biophy Acta Bioenerg, 2013,1827:50-59.
[9] Jung K H, Lee J, Dardick C, Seo Y S, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho Y J, Lee G C, Lee Y, An G, Ronald P C. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet, 2008,4:e1000164.
[10] Kuo W Y, Huang C H, Shih C, Jinn T L. Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio- protocol, 2013,3:e811.
[11] Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H, Jinn T L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005,139:425-436.
[12] Du J, Zhu Z, Li W C. Over-expression of exotic superoxide dismutase gene MnSOD and increase in stress resistance in maize. J Plant Physiol Mol Biol, 2006,32:57-63.
[13] Chai Q, Gan Y, Zhao C, Xu H L, Waskom R M, Niu Y, Siddique K H. Regulated deficit irrigation for crop production under drought stress: a review. Agron Sustain Dev, 2016,36:1-21.
[14] Akram N A, Ashraf M. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul, 2013,32:663-679.
[15] Wang Y, Wei S, Wang J, Su X, Suo B, Qin F, Zhao H. Exogenous application of 5-aminolevulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Braz J Bot, 2018,41:275-285.
[16] Wang Y X, Liu S C, Zhang H L, Zhao Y D, Zhao H J, Liu H S. Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance. Acta Physiol Plant, 2014,36:2195-2202.
[17] Wang Y, Zhang H, Hou P, Su X, Zhao P, Zhao H, Liu S. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat ( Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul, 2014,73:289-297.
[18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
[19] Wang C, Zhang Q. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotox Environ Safe, 2017,137:218-224.
[20] Baek K H, Skinner D Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci, 2003,165:1221-1227.
[21] Li G, Peng X, Wei L, Kang G. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 2013,529:321-325.
[22] David M K, John R E. The importance of energy balance in improving photosynthetic productivity. Plant Physiol, 2011,155:70-78.
[23] 刘美, 马志良. 青藏高原东部高寒灌丛生物量分配对模拟增温的响应. 生态学报, 2021,41:1421-1430.
Liu M, Ma Z L. Response of alpine shrub biomass allocation to simulated warming in the eastern Tibetan Plateau. Acta Ecol Sin, 2021,41:1421-1430 (in Chinese with English abstract).
[24] 施成晓, 陈婷, 王昌江, 秦晓梁, 廖允成. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016,36:483-490.
Shi C X, Chen T, Wang C J, Qin X L, Liao Y C. Effects of drought stress on seed germination and seedling root and shoot biomass allocation of wheat with different drought resistance. J Triticeae Crops, 2016,36:483-490 (in Chinese with English abstract).
[25] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021,47:714-727.
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Analysis on root traits and drought resistance characteristics of wheat at seedling stage in Shanxi Province. Acta Agron Sin, 2021,47:714-727 (in Chinese with English abstract).
[26] 谢燕, 张庆龙, 胡玲, 王法宏, 李豪圣, 孔令安. PEG胁迫对不同小麦品种幼苗抗旱生理指标的影响. 麦类作物学报, 2017,37:947-954.
Xie Y, Zhang Q L, Hu L, Wang F H, Li H S, Kong L A. Effects of PEG stress on physiological indexes of drought resistance of different wheat varieties seedlings. J Triticeae Crops, 2017,37:947-954 (in Chinese with English abstract).
[27] Hendriks P W, Kirkegaard J A, Lilley J M, Gregory P J, Rebetzke G J. A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J Exp Bot, 2016,67:327-340.
[28] Lastochkina O, Garshina D, Ivanov S, Yuldashev R, Khafizova R, Allagulova C, Fedorova K, Avalbaev A, Maslennikova D, Bosacchi M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants, 2020,9:1810.
[29] Khadka K, Raizada M N, Navabi A. Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat. Front Plant Sci, 2020,11:1149.
[30] Balestrasse K B, Tomaro M L, Batlle A, Noriega G O. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010,71:2038-2045.
[31] Chan K X, Phua S Y, Crisp P A, McQuinn R P, Pogson B J. Learning the languages of the chloroplast: Retrograde signaling and beyond. Annu Rev Plant Biol, 2016,67:25-53.
[32] Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC Plant Biol, 2020,20:18-33.
[33] Kannan N D, Kulandaivelu G. Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J Med Plants Res, 2011,5:3929-3935.
[34] Sarijeva G, Knapp M, Lichtenthaler H K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol, 2007,164:950-955.
[35] Guan X K, Song L, Wang T C, Turner N C, Li F M. Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. J Agron Crop Sci, 2015,201:253-266.
[36] Imrul M A, Cao F B, Zhang M, Chen X H, Zhang G P, Wu F B. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One, 2013,8:e77869.
[37] Liu D, Wu L, Naeem M S, Liu H, Deng X, Xu L, Zhang F, Zhou W. 5-aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant, 2013,35:2747-2759.
[38] Ali B, Wang B, Ali S, Ghani M, Hayat M, Yang C, Xu L, Zhou W. 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul, 2013,32:604-614.
[39] Eshaghi S, Andersson B, Barber J. Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett, 1999,446:23-26.
[40] Niu K, Ma H. The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environ Exp Bot, 2018,155:260-271.
[41] Weisz D A, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross M L, Pakrasi H B. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in photosystem II. Prac Natl Acad Sci USA, 2017,114:2224-2229.
[42] Dobakova M, Sobotka R, Tichy M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol, 2009,149:1076-1086.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[6] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[10] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!