欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 463-477.doi: 10.3724/SP.J.1006.2022.14010

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响

谢呈辉1,2(), 马海曌1,2, 许宏伟1,2, 徐郗阳1,2, 阮国兵1,2, 郭峥岩1,2, 宁永培1,2, 冯永忠1,2, 杨改河1,2, 任广鑫1,2,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2陕西省循环农业工程技术研究中心, 陕西杨凌 712100
  • 收稿日期:2021-01-19 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-06-09
  • 通讯作者: 任广鑫
  • 作者简介:E-mail: xiechenghui001@163.com
  • 基金资助:
    本研究由宁夏回族自治区重点研发计划重大(重点)项目(2019BBF02007);陕西省循环农业工程技术研究中心资助(2019HBGC-13)

Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia

XIE Cheng-Hui1,2(), MA Hai-Zhao1,2, XU Hong-Wei1,2, XU Xi-Yang1,2, RUAN Guo-Bing1,2, GUO Zheng-Yan1,2, NING Yong-Pei1,2, FENG Yong-Zhong1,2, YANG Gai-He1,2, REN Guang-Xin1,2,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
  • Received:2021-01-19 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-06-09
  • Contact: REN Guang-Xin
  • Supported by:
    This study was supported by the Major (Key) Program of Key Research and Development Plan in Ningxia Hui Autonomous Region(2019BBF02007);the Shaanxi Engineering Research Center of Circular Agriculture(2019HBGC-13)

摘要:

为明确不同施氮量下糜子生长规律、产量表现以及氮素利用效率, 分析糜子形态特征与产量和氮素利用的关系, 同时确定宁夏引黄灌区麦后复种糜子的适宜施氮量, 本研究于2019年和2020年以宁糜9号为材料, 2019年设0 (N0)、90 (N1)、120 (N2)和150 kg hm -2 (N3)纯氮水平, 2020年增设180 (N4)和210 kg hm -2 (N5)纯氮水平, 以不施氮肥(N0)为对照在宁夏引黄灌区进行大田试验。结果表明, 施氮显著促进糜子各生育时期株高、茎粗、叶面积、根系的生长和干物质的积累, 但当施氮量超过150 kg hm -2时, 除茎粗和叶面积外, 其余各生长指标出现下降趋势; 根冠比随施氮量的增加呈先降低后升高再略微下降趋势, 多数生育时期在N2处理根冠比达最小值, 拔节期、抽穗期、灌浆期和成熟期分别为0.119、0.087、0.054和0.052。施氮显著促进糜子产量、千粒重和穗粒数增加, 并且随施氮量的增加呈先增加后略微下降趋势, N2、N3处理促进效果最佳; N2、N3处理糜子产量分别为2979.41 kg hm -2、3084.67 kg hm -2, 较N0处理分别增产76.22%、83.21%。糜子的氮素收获指数、氮肥表观回收率、农学利用率和偏生产力在N2处理表现较好, 分别为60.23%、61.81%、10.77 kg kg -1、24.83 kg kg -1。进一步分析发现, 糜子产量与各生长指标显著正相关, 各生长指标之间显著正相关, 根系形态特征与氮素积累量显著正相关, 表明施氮可以通过改善糜子根系形态特征来促进氮素吸收, 进一步促进冠层的生长, 从而有利于产量的形成。因此, 适量施氮明显改善糜子生长状况、提高产量, 并且有效平衡产量和氮素利用效率。综合来看, 宁夏引黄灌区麦后复种糜子的合理施氮量为120~150 kg hm -2

关键词: 施氮量, 糜子, 生长, 产量, 氮素利用

Abstract:

The objective of this study is to clarify the growth rule, yield, and nitrogen utilization efficiency of proso millet under different nitrogen rates, the relationship between morphological characteristics and grain yield and nitrogen utilization was explored, and the suitable nitrogen rate for multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia was determined. The field experiments were conducted by single factor randomized block design, with four nitrogen rates [0 (N0), 90 (N1), 120 (N2), and 150 kg hm -2 (N3)] were set in 2019, and six nitrogen rates [180 (N4) and 210 kg hm -2 (N5) were added] in 2020. The results showed that the plant height, stem diameter, leaf area, root morphology, and dry matter accumulation at the key growth stages of proso millet were significantly promoted by nitrogen application, however, nitrogen application rate exceeded 150 kg hm -2, these indexes declined slightly except for the stem diameter and leaf area. With the increase of nitrogen rate, the root-shoot ratio decreased first and then increased and then decreased slightly, and it reached the minimum under N2 treatment at most growth stages. The root-shoot ratio at jointing, heading, grain-filling and maturity stage under N2 treatment were 0.119, 0.087, 0.054, and 0.052, respectively. The grain yield, 1000-grain weight, and grain number per plant were significantly increased by nitrogen application, and with the increase of nitrogen application rate, the yield increased initially then slightly decreased, and achieved the best effect in N2 and N3 treatments. The grain yields of N2 and N3 treatments were 2979.41 kg hm -2 and 3084.67 kg hm -2, respectively, which were 76.22% and 83.21% higher than those of N0 treatment. Nitrogen harvest index (NHI), nitrogen fertilizer apparent recovery rate (NRE), agronomic efficiency (NAE), and partial productivity (NPFP) under N2 treatment were 60.23%, 61.81%, 10.77 kg kg -1, and 24.83 kg kg -1, respectively. Furthermore, grain yield was significantly positively correlated with each growth index, and there was significant positive correlation between each growth index, and the root morphological characteristics were significantly positively correlated with nitrogen accumulation. These results revealed that nitrogen application could improve the root morphological characteristics of proso millet to promote the absorption of nitrogen, and further promote the growth of canopy, which was conductive to yield formation. In view of the growth, grain yield and nitrogen utilization, the reasonable nitrogen rate for multiple cropping proso millet in Irrigation Area of Ningxia was 120-150 kg hm -2.

Key words: nitrogen rate, proso millet, growth, grain yield, nitrogen utilization

图1

糜子生育期内日均气温和降水量(2019-2020)"

图2

不同施氮处理对糜子各生育时期株高、茎粗和叶面积的影响(2019-2020) 图中数据为9次重复的平均值±标准误。柱上不同小写字母表示同一生育时期不同施氮处理间差异显著(P < 0.05)。N: 施氮; Y: 年份; N×Y: 施氮与年份互作。**表示在0.01水平上差异显著, ns表示差异不显著(P > 0.05)。N0、N1、N2、N3、N4和N5分别代表施氮量0、90、120、150、180和210 kg hm-2。"

图3

不同施氮处理对糜子各生育时期总根长、总根表面积、总根体积和根平均直径的影响(2019-2020) 图中数据为9次重复的平均值±标准误。柱上不同小写字母表示同一生育时期不同施氮处理间差异显著(P < 0.05)。**表示在0.01水平上差异显著, ns表示差异不显著(P > 0.05)。处理和缩写同图2。"

图4

不同施氮处理对糜子各生育时期干物质积累与根冠比的影响(2019-2020) 图中数据为3次重复的平均值±标准误。柱上不同小写字母表示同一生育时期不同施氮处理间差异显著(P < 0.05)。*和**分别表示在0.05和0.01水平上差异显著, ns表示差异不显著。处理和缩写同图2。"

表1

不同施氮处理对糜子产量及其构成因素的影响(2019-2020)"

年份
Year
施氮量
N treatment
产量
Grain yield (kg hm-2)
千粒重
1000-grain weight (g)
穗粒数
Grain number (No. per plant)
2019 N0 1584.81±243.51 b 7.7005±0.0670 c 395.11±45.35 b
N1 2293.33±82.21 ab 7.7431±0.0453 bc 516.33±65.76 ab
N2 2708.15±209.31 a 7.9327±0.0650 a 609.00±53.68 a
N3 3012.59±323.21 a 7.9124±0.0447 ab 638.78±68.11 a
2020 N0 1790.37±147.43 c 7.3548±0.0933 b 156.78±37.31 b
N1 2834.48±100.69 b 7.6680±0.0662 a 266.89±47.59 ab
N2 3250.67±73.71 a 7.7605±0.1116 a 329.44±31.85 a
N3 3156.74±129.61 ab 7.7532±0.0706 a 385.67±66.17 a
N4 3084.26±124.88 ab 7.7191±0.0427 a 338.44±26.45 a
N5 3094.93±85.29 ab 7.5624±0.1074 ab 309.56±31.49 a
方差分析 ANOVA
施氮 N treatment (N) 17.62** 5.08** 5.43**
年份 Year (Y) 8.81** 12.49** 52.82**
施氮×年份 N×Y 0.78ns 1.14ns 0.06ns

图5

糜子产量、千粒重和穗粒数与施氮量的回归分析(2020) 图中散点为实测数据, 实线为回归线。**表示回归模型在0.01水平上显著。"

图6

糜子各生长指标与产量的回归分析(2019-2020) 图中产量为实测数值; 各生长指标为同一小区4个生育时期的平均值; 实线为回归线(n = 30)。**表示回归模型在0.01水平上显著。"

图7

不同施氮处理对糜子各生育时期地上部氮素积累量的影响(2019-2020) 图中数据为3次重复的平均值±标准误。柱上不同小写字母表示同一生育时期不同施氮处理间差异显著(P < 0.05)。**分别表示在0.01水平上显著差异, ns表示差异不显著。处理和缩写同图2。"

表2

不同施氮量对糜子氮素利用的影响(2019-2020)"

年份
Year
施氮量
N treatment
氮素收获指数
NHI (%)
氮肥表观回收率
NRE (%)
氮肥农学利用率
NAE (kg kg-1)
氮肥偏生产力
NPFP (kg kg-1)
2019 N0 60.27±1.09 a
N1 62.46±1.34 a 38.11±12.50 a 7.87±0.91 a 25.48±0.91 a
N2 60.45±1.93 a 60.00±1.96 a 9.36±1.75 a 22.57±1.75 a
N3 64.51±0.81 a 50.15±5.23 a 9.52±2.15 a 20.08±2.15 a
2020 N0 62.07±1.46 ab
N1 64.49±1.52 a 42.01±8.27 b 11.60±1.12 a 31.49±1.12 a
N2 60.02±0.20 abc 63.62±3.87 a 12.17±0.61 a 27.09±0.61 b
N3 59.42±0.95 bc 49.63±4.85 ab 9.11±0.86 b 21.04±0.86 c
N4 56.66±2.65 c 41.42±5.40 b 7.19±0.69 bc 17.13±0.69 d
N5 50.89±0.75 d 43.62±6.17 b 6.21±0.41 c 14.74±0.41 d
方差分析 ANOVA
施氮 N treatment (N) 10.59** 3.20* 4.23* 34.74**
年份 Year (Y) 0.17ns 0.18ns 4.33ns 15.24**
施氮×年份 N×Y 2.68ns 0.07ns 1.63ns 2.33ns

表3

各生育时期糜子地上部氮素积累量与根系形态、干物质积累量的相关性(2019-2020)"

地上部氮素积累量 N accumulation of above-ground part
拔节期 Jointing 抽穗期 Heading 灌浆期 Grain-filling 成熟期 Maturity
总根长 Total root length 0.671** 0.694** 0.701** 0.720**
总根表面积 Total root surface 0.730** 0.747** 0.707** 0.278ns
总根体积 Total root volume 0.745** 0.563** 0.661** 0.286ns
根平均直径 Root average diameter 0.640** 0.352ns 0.499** 0.319ns
根干物质 Root dry matter 0.712** 0.904** 0.791** 0.550**
[1] 王树起, 韩晓增, 乔云发, 严君, 李晓慧. 施氮对大豆根系形态和氮素吸收积累的影响. 中国生态农业学报, 2009,17:1069-1073.
Wang S Q, Han X Z, Qiao Y F, Yan J, Li X H. Root morphology and nitrogen accumulation in soybean (Glycnie max L.) under different nitrogen application levels. Chin J Eco-Agric, 2009,17:1069-1073 (in Chinese with English abstract).
[2] 闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪. 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019,39:478-486.
Wen L, Zhang F C, Zou H Y, Lu J S, Guo J J, Xue Z Q. Effect of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat. J Triticeae Crops, 2019,39:478-486 (in Chinese with English abstract).
[3] 宁芳, 张元红, 温鹏飞, 王瑞, 王倩, 董朝阳, 贾广灿, 李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应. 作物学报, 2019,45:777-791.
Ning F, Zhang Y H, Wen P F, Wang R, Wang Q, Dong C Y, Jia G C, Li J. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions. Acta Agron Sin, 2019,45:777-791 (in Chinese with English abstract).
[4] Chen J, Liu L T, Wang Z B, Zhang Y J, Sun H C, Song S J, Bai Z Y, Lu Z Y, Li C D. Nitrogen fertilization increases root growth and coordinates the root-shoot relationship in cotton. Front Plant Sci, 2020,11:880.
[5] 李波, 宫亮, 曲航, 金丹丹, 孙文涛. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响. 作物杂志, 2020, ( 1):173-178.
Li B, Gong L, Qu H, Jin D D, Sun W T. Effects of nitrogen application rate on rice growth and yield in Liaohe Delta. Crops, 2020, ( 1):173-178 (in Chinese with English abstract).
[6] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响. 作物学报, 2021,47:342-350.
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution. Acta Agron Sin, 2021,47:342-350 (in Chinese with English abstract).
[7] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z Q, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[8] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013,19:259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. J Plant Nutr Fert, 2013,19:259-273 (in Chinese with English abstract).
[9] 王纶, 王星玉, 温琪汾, 武变娥. 中国黍稷种质资源研究与利用. 植物遗传资源学报, 2005,6:474-477.
Wang L, Wang X Y, Wen Q F, Wu B E. Research and utilization of proso millet germplasm resource in China. J Plant Genet Resour, 2005,6:474-477 (in Chinese with English abstract).
[10] 贾根良, 张社奇, 代惠萍, 屈继旗, 高小丽, 冯佰利. 拔节后糜子干物质积累及分配规律研究. 西北农林科技大学学报(自然科学版), 2009,37(4):86-90.
Jia G L, Zhang S Q, Dai H P, Qu J Q, Gao X L, Feng B L. Studies on dry matter accumulation and allocation of broomcorn millet (Panicum miliaceum L.) at late jointing stage. J Northwest A&F Univ (Nat Sci Edn), 2009,37(4):86-90 (in Chinese with English abstract).
[11] 屈洋, 苏旺, 李翠, 高金锋, 高小丽, 王鹏科, 冯佰利, 柴岩. 陕北半干旱区沟垄覆膜集水模式下糜子边际效应及生理特性. 应用生态学报, 2014,25:776-782.
Qu Y, Su W, Li C, Gao J F, Gao X L, Wang P K, Feng B L, Chai Y. Border effect and physiological characteristics of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in the semi-arid region of Northern Shaanxi, China. Chin J Appl Ecol, 2014,25:776-782 (in Chinese with English abstract).
[12] 张美俊, 乔治军, 杨武德, 陈凌, 冯美臣. 糜子氮、磷、钾肥的效应及优化研究. 植物营养与肥料学报, 2013,19:347-353.
Zhang M J, Qiao Z J, Yang W D, Chen L, Feng M C. Effect of N, P and K fertilizer application and optimum rate for yield of millet. J Plant Nutr Fert, 2013,19:347-353 (in Chinese with English abstract).
[13] 王君杰, 王海岗, 陈凌, 曹晓宁, 田翔, 乔治军. 密度-氮肥互作对糜子光合特性及干物质积累的影响. 西北农业学报, 2014,23(12):83-89.
Wang J J, Wang H G, Chen L, Cao X Y, Tian X, Qiao Z J. Effects of density and nitrogen fertilizer on photosynthetic characteristics and dry matter accumulation of broomcorn millet. Acta Agric Boreali-occident Sin, 2014,23(12):83-89 (in Chinese with English abstract).
[14] 周瑜, 苏旺, 王舰, 屈洋, 高小丽, 杨璞, 冯佰利. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016,42:873-885.
Zhou Y, Su W, Wang J, Qu Y, Gao X L, Yang P, Feng B L. Effects of mulching and nitrogen application on photosynthetic characteristics and yield traits in broomcorn millet. Acta Agron Sin, 2016,42:873-885 (in Chinese with English abstract).
[15] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 杨璞, 高小丽, 冯佰利. 氮肥运筹对糜子生育后期干物质积累与转运及叶片氮素代谢的调控效应. 中国农业科学, 2018,51:1045-1056.
Gong X W, Han H K, Zhang D Z, Li J, Wang M, Xue Z H, Yang P, Gao X L, Feng B L. Effects of nitrogen fertilizer on dry matter accumulation, transportation and nitrogen metabolism in functional leaves of broomcorn millet at late growth stage. Sci Agric Sin, 2018,51:1045-1056 (in Chinese with English abstract).
[16] Gong X W, Dang K, Liu L, Zhao G, Lyu S M, Tian L X, Jin F, Feng Y, Zhao Y N, Feng B L. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agric Water Manage, 2021,243:106434.
[17] Xu G W, Lu D K, Wang H Z, Li Y G. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manage, 2018,203:385-394.
[18] 严奉君, 孙永健, 马均, 徐徽, 李玥, 杨志远, 蒋明金, 吕腾飞. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015,21:23-55.
Yan F J, Sun Y J, Ma J, Xu H, Li Y, Yang Z Y, Jiang M J, Lyu T F. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice. J Plant Nutr Fert, 2015,21:23-55 (in Chinese with English abstract).
[19] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014,40:1999-2007.
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014,40:1999-2007 (in Chinese with English abstract).
[20] 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015,41:613-622.
Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai T B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the Middle-Lower Yangtze River. Acta Agron Sin, 2015,41:613-622 (in Chinese with English abstract).
[21] 邱喜阳, 王晨阳, 王彦丽, 朱云集, 郭天财. 施氮量对冬小麦根系生长分布及产量的影响. 西北农业学报, 2012,21(1):53-58.
Qiu X Y, Wang C Y, Wang Y L, Zhu Y J, Guo T C. Effects of nitrogen application rate on root system distribution and grain yield of winter wheat cultivars. Acta Agric Boreali-occident Sin, 2012,21(1):53-58 (in Chinese with English abstract).
[22] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨今胜, 董树亭, 张吉旺, 赵斌. 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014,20:845-859.
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B. Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen uptake in different N use efficiency maize cultivars. J Plant Nutr Fert, 2014,20:845-859 (in Chinese with English abstract).
[23] 张美俊, 乔治军, 杨武德, 冯美臣, 肖璐洁, 王冠, 段云. 不同糜子品种对低氮胁迫的生物学响应. 植物营养与肥料学报, 2014,20:661-669.
Zhang M J, Qiao Z J, Yang W D, Feng M C, Xiao L J, Wang G, Duan Y. Biological response of different cultivars of millet to low nitrogen stress. J Plant Nutr Fert, 2014,20:661-669 (in Chinese with English abstract).
[24] Liu C J, Gong X W, Wang H L, Dang K, Deng X P, Feng B L. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol Biochem, 2020,151:233-242.
[25] 王西娜, 于金铭, 谭军利, 张佳群, 魏照清, 王朝辉. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力. 中国农业科学, 2020,53:4891-4903.
Wang X N, Yu J M, Tan J L, Zhang J Q, Wei Z Q, Wang Z H. Requirement of nitrogen, phosphorus and potassium and potential of reducing fertilizer application of spring wheat in Yellow River irrigation area of Ningxia. Sci Agric Sin, 2020,53:4891-4903 (in Chinese with English abstract).
[26] 王连喜, 李菁, 李剑萍, 李琪, 吴荣军. 气候变化对宁夏农业的影响综述. 中国农业气象, 2011,32:155-160.
Wang L X, Li J, Li J P, Li Q, Wu R J. Overview on the effects of climate change on agriculture in Ningxia. Chin J Agrometeorol, 2011,32:155-160 (in Chinese with English abstract).
[27] 范玲, 何文寿, 贾彪. 宁夏引黄灌区麦后复种饲料油菜生长发育规律及其主要性状分析. 西南农业学报, 2018,31:1355-1359.
Fan L, He W S, Jia B. Growth and development rule and analysis of main characters of Brassica napus L. after spring wheat harvesting in irrigated area of Ningxia. Southwest China J Agric Sci, 2018,31:1355-1359 (in Chinese with English abstract).
[28] 魏子奇, 何文寿, 包蕾, 何强强. 播种量对引黄灌区麦茬复种饲料油菜生长性状的影响. 湖南农业大学学报(自然科学版), 2019,45(3):254-257.
Wei Z Q, He W S, Bao L, He Q Q. Effect of sowing rate on growth traits of wheat stubble multiple forage rape in Yellow River irrigated area. J Hunan Agric Univ (Nat Sci), 2019,45(3):254-257 (in Chinese with English abstract).
[29] 张俊丽, 于洋, 岳彩娟. 宁夏引黄灌区麦后复种牧草品种筛选试验结果初报. 宁夏农林科技, 2016,57(3):16-18.
Zhang J L, Yu Y, Yue C J. Preliminary report on screening test for forage species cropping after wheat in irrigated areas in Ningxia. Ningxia J Agric For Sci Technol, 2016,57(3):16-18 (in Chinese with English abstract).
[30] 刘超. 宁夏引黄灌区春麦复种技术模式研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2017.
Liu C. Research on Multiple Cropping Patterns of Spring Wheat in Yellow River Irrigation Area, Ningxia. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[31] Zhang D S, Li A, Lam S K, Li P, Zong Y Z, Gao Z Q, Hao X Y. Increased carbon uptake under elevated CO2 concentration enhances water-use efficiency of C4 broomcorn millet under drought. Agric Water Manage, 2021,245:106631.
[32] Ciampitti I A, Vyn T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review. Field Crops Res, 2012,133:48-67.
[33] 冯小杰, 战秀梅, 王颖, 赵蔚, 王雪鑫, 李俊, 何天池, 陈坤, 彭靖, 韩晓日. 稳定性氮肥减施对春玉米氮素吸收及土壤无机氮供应的影响. 植物营养与肥料学报, 2020,26:1216-1225.
Feng X J, Zhan X M, Wang Y, Zhao Y, Wang X X, Li J, He T C, Chen K, Peng J, Han X R. Effects of stabilized nitrogen fertilizer reduction on nitrogen uptake of spring maize and inorganic nitrogen supply in soils. J Plant Nutr Fert, 2020,26:1216-1225 (in Chinese with English abstract).
[34] 蒋耿民, 李援农, 周乾. 不同揭膜时期和施氮量对陕西关中地区夏玉米生理生长、产量及水分利用效率的影响. 植物营养与肥料学报, 2013,19:1065-1072.
Jiang G M, Li Y N, Zhou Q. Effects of different uncovering plastic film periods and nitrogen rates on physiology, growth, yield and water use efficiency of summer maize in Guanzhong Region, Shaanxi Province. J Plant Nutr Fert, 2013,19:1065-1072 (in Chinese with English abstract).
[35] 刘鹏, 杨刚, 常闻谦, 程炳文, 赵世伟. 水氮运筹对糜子生育后期干物质积累、转运及水氮利用效率的影响. 水土保持研究, 2019,26(4):139-145.
Liu P, Yang G, Chang W Q, Cheng B W, Zhao S W. Effects of water and nitrogen management on dry matter accumulation, transportation, and water and nitrogen use efficiency of broomcorn millet in the late growth stage. Res Soil Water Conserv, 2019,26(4):139-145 (in Chinese with English abstract).
[36] Peres S R, Valle L E D, Da S T R B, Fernandes C S B, Catarina A C. Nitrogen fertilization of fall panicum cultivars (Panicum dichotomiflorum Michx.): biochemical and agronomical aspects. Sci Agric, 2004,61:82-87.
[37] 陈智勇, 谢迎新, 张阳阳, 缑培欣, 马冬云, 康国章, 王晨阳, 郭天财. 小麦根长密度和根干重密度对氮肥的响应及其与产量的关系. 麦类作物学报, 2020,40:1223-1231.
Chen Z Y, Xie Y X, Zhang Y Y, Gou P X, Ma D Y, Kang G Z, Wang C Y, Guo T C. Responses of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat. J Triticeae Crops, 2020,40:1223-1231 (in Chinese with English abstract).
[38] Passioura J B. Roots and drought resistance. Agric Water Manage, 1983,7:265-280.
[39] Zhang Y Y, Han H K, Zhang D Z, Li J, Gong X W, Feng B L, Xue Z H, Yang P. Effects of ridging and mulching combined practices on proso millet growth and yield in semi-arid regions of China. Field Crops Res, 2017,213:65-74.
[40] 王君杰, 曹晓宁, 王海岗, 陈凌, 刘思辰, 田翔, 秦慧彬, 杨光宗, 乔治军. 施氮时期对糜子产量和氮素利用效率的影响. 中国农业大学学报, 2017,22(12):20-25.
Wang J J, Cao X N, Wang H G, Chen L, Liu S C, Tian X, Qin H B, Yang G Z, Qiao Z J. Effects of nitrogen application stage on the yield and nitrogen use efficiency of broomcorn millet. J China Agric Univ, 2017,22(12):20-25 (in Chinese with English abstract).
[41] 李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明. 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015,21:873-883.
Li C S, Tang Y L, Wu C, Wu X L, Huang G, He G, Guo D M. Effect of N rate on growth and grain filling of wheat in Sichuan Basin. J Plant Nutr Fert, 2015,21:873-883 (in Chinese with English abstract).
[42] Huang M, Lei T, Cao F B, Chen J N, Shan S L, Zou Y B. Grain yield responses to nitrogen rate in two elite double-cropped inbred rice cultivars released 41 years apart. Field Crops Res, 2020,259:107970.
[43] 宫亮, 曲航, 刘艳, 隽英华, 孙文涛. 辽河三角洲地区高产水稻氮肥投入阈值及利用率. 中国土壤与肥料, 2017, ( 5):23-28.
Gong L, Qu H, Liu Y, Juan Y H, Sun W T. Nitrogen threshold and nitrogen use efficiency of high yield rice in the Liaohe River Delta. Soil Fert Sci China, 2017, ( 5):23-28 (in Chinese with English abstract).
[44] 景立权, 赵福成, 徐仁超, 袁建华, 陆大雷, 陆卫平. 施氮水平对超高产夏玉米籽粒及植株形态学特征的影响. 植物营养与肥料学报, 2014,20:37-47.
Jing L Q, Zhao F C, Xu R C, Yuan J H, Lu D L, Lu W P. Effects of nitrogen levels on the morphology characteristics of grain and plant of summer maize (Zea mays L.) under super-high yield conditions. J Plant Nutr Fert, 2014,20:37-47 (in Chinese with English abstract).
[45] Qiu S J, He P, Zhao S C, Li W J, Xie J G, Hou Y P, Grant C A, Zhou W, Jin J Y. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in northeast China. Agron J, 2015,107:305-313.
[46] 严富来, 张富仓, 范兴科, 王英, 郭金金, 张晨阳. 水氮互作对宁夏沙土春玉米产量与氮素吸收利用的影响. 农业机械学报, 2020,51(7):283-293.
Yan F L, Zhang F C, Fan X K, Wang Y, Guo J J, Zhang C Y. Effects of water and nitrogen fertilizer supply on yield and nitrogen absorption and utilization efficiency of spring maize in sandy soil area in Ningxia. Trans CSAM, 2020,51(7):283-293 (in Chinese with English abstract).
[47] 于小凤, 李进前, 田昊, 彭斌, 张燕, 王熠, 袁秋梅, 黄建晔, 王余龙, 董桂春. 影响粳稻品种吸氮能力的根系性状. 中国农业科学, 2011,44:4358-4366.
Yu X F, Li J Q, Tian H, Peng B, Zhang Y, Wang Y, Yuan Q M, Huang J Y, Wang Y L, Dong G C. Root traits affecting N absorptive capacity in conventional japonica rice. Sci Agric Sin, 2011,44:4358-4366 (in Chinese with English abstract).
[48] 徐新朋, 周卫, 梁国庆, 孙静文, 王秀斌, 何萍, 徐芳森, 余喜初. 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2015,21:763-772.
Xu X P, Zhou W, Liang G Q, Sun J W, Wang X B, He P, Xu F S, Yu X C. Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems. J Plant Nutr Fert, 2015,21:763-772 (in Chinese with English abstract).
[49] 巨晓棠, 张福锁. 关于氮肥利用率的思考. 生态环境, 2003,12(2):192-197.
Ju X T, Zhang F S. Thinking about nitrogen recovery rate. Ecol Environ, 2003,12(2):192-197 (in Chinese).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[14] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!