作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1325-1332.doi: 10.3724/SP.J.1006.2022.14072
张钰坤1,2(), 陆赢1,2, 崔看3, 夏石头3, 刘忠松1,2,*()
ZHANG Yu-Kun1,2(), LU Ying1,2, CUI Kan3, XIA Shi-Tou3, LIU Zhong-Song1,2,*()
摘要:
在芸薹属植物中TT8基因是种子颜色的调控基因。异源四倍体芥菜TT8基因有2个拷贝, 分别位于A09与B08染色体上。本研究针对不同拷贝设计特异引物, 对749份芥菜进行扩增、测序或酶切检测, 发现BjuA09.TT8和BjuB08.TT8各有7个和6个等位变异。与野生型相比, BjuA09.TT8.a1-a5和BjuB08.TT8.b1-b4等位基因都发生了大片段插入, 而BjuA09.TT8.a6出现了删除, 但BjuB08.TT8.b5仅在第7外显子处有1个碱基替换。使用Repeatmasker软件对等位基因序列与甘蓝型油菜注释库进行重复序列比对, 发现BjuA09.TT8.a1-a4和BjuB08.TT8.b1-b4等位基因主要含有I类转座子, 少量为II类转座子及Helitron类转座子插入。统计还发现, BjuA09.TT8.a4-BjuB08.TT8.b5单倍型为主要的黄籽单倍型, 占所分析黄籽材料的89.49% (247/276), 其次为BjuA09.TT8.a4-BjuB08.TT8.b3单倍型, 占6.52%。地理分布分析结果显示, 中国尤其是新疆芥菜黄籽突变等位基因频率显著高于世界其他地区, 这与历史记载相印证, 说明芥菜黄籽性状可能起源于中国新疆。本研究结果为油菜黄籽育种选用优异基因资源提供了依据。
[1] |
Niu Y, Wu L M, Li Y H, Huang H L, Qian M C, Sun W, Zhu H, Xu Y F, Fan Y H, Mahmood U, Xu B B, Zhang K, Qu C M, Li J N, Lu K. Deciphering the transcriptional regulatory networks that control size, color, and oil content in Brassica rapa seeds. Biotechnol Biofuels, 2020, 13: 90.
doi: 10.1186/s13068-020-01728-6 |
[2] |
Zhang Y, Li X, Ma C Z, Shen J X, Chen B Y, Tu J X, Fu T D. The inheritance of seed color in a resynthesized Brassica napus line No. 2127-17 including a new epistatic locus. Genes Genomics, 2009, 31: 413-419.
doi: 10.1007/BF03191854 |
[3] |
Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303-310.
doi: 10.1007/s00122-004-1835-1 |
[4] |
Rahman M, Li G Y, Schroeder D, McVetty P B E. Inheritance of seed coat color genes in Brassica napus (L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Mol Breed, 2010, 26: 439-453.
doi: 10.1007/s11032-009-9384-6 |
[5] |
Rahman M, Mcvetty P. A review of Brassica seed color. Can J Plant Sci, 2011, 91: 437-446.
doi: 10.4141/cjps10124 |
[6] |
Rahman M. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001, 120: 463-472.
doi: 10.1046/j.1439-0523.2001.00640.x |
[7] |
Xiao S, Xu J, Li Y, Zhang L, Shi S, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611-618.
doi: 10.1139/G07-044 |
[8] |
Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840-854.
pmid: 17893725 |
[9] |
Badani A G, Snowdon R J, Wittkop B, Lipsa F D, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49: 1499-1509.
doi: 10.1139/g06-091 |
[10] |
Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012, 7: e44145.
doi: 10.1371/journal.pone.0044145 |
[11] |
Wang Y H, Xiao L, Dun X L, Liu K D, Du D Z. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang (Brassica rapa L. landrace). Mol Breed, 2017, 37: 137.
doi: 10.1007/s11032-017-0736-3 |
[12] |
Wang Y, Xiao L, Guo S, An F, Du D. Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One, 2016, 11: e0166464.
doi: 10.1371/journal.pone.0166464 |
[13] |
Ren Y, He Q, Ma X, Zhang L. Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci, 2017, 8: 1410.
doi: 10.3389/fpls.2017.01410 |
[14] |
Zhang Y, Sun Y, Sun J, Feng H, Wang Y. Identification and validation of major and minor QTLs controlling seed coat color in Brassica rapa L. Breed Sci, 2019, 69: 47-54.
doi: 10.1270/jsbbs.18108 |
[15] | 刘显军. 芥菜型油菜黄籽基因克隆和黄籽形成机制分析. 湖南农业大学博士学位论文, 湖南长沙 2013. |
Liu X J. Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract). | |
[16] |
Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339-347.
doi: 10.1007/s00122-013-2222-6 |
[17] | Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389-452. |
[18] |
Chen S, Wan Z J, Nelson M N, Chauhan J S, Redden R, Burton W A, Lin P, Salisbury P A, Fu T D, Cowling W A. Evidence from genome-wide simple sequence repeat markers for a polyphyletic origin and secondary centers of genetic diversity of Brassica juncea in China and India. J Heredity, 2013, 104: 416-427.
doi: 10.1093/jhered/est015 |
[19] | 刘显军, 袁谋志, 官春云, 陈社员, 刘淑艳, 刘忠松. 芥菜型油菜黄籽性状的遗传、基因定位和起源探讨. 作物学报, 2009, 35: 839-847. |
Liu X J, Yuan M Z, Guan C Y, Chen S Y, Liu S Y, Liu Z S. Inheritance, mapping, and origin of yellow-seeded trait in Braassica juncea. Acta Agron Sin, 2009, 35: 839-847 (in Chinese with English abstract). | |
[20] |
Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B Y, Jiao Y M, Zhang C F, Khan M H U, Khan S U, Fan C C, Zhou Y M. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2020, 18: 1153-1168.
doi: 10.1111/pbi.v18.5 |
[21] |
Wells J N, Feschotte C. A field guide to eukaryotic transposable elements. Annu Rev Genet, 2020, 54: 539-561.
doi: 10.1146/genet.2020.54.issue-1 |
[22] |
Quesneville H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mobile DNA, 2020, 11: 28.
doi: 10.1186/s13100-020-00223-x pmid: 32742313 |
[23] |
Perumal S, Koh C S, Jin L L, Buchwaldt M, Higgins E E, Zheng C F, Sankoff D, Robinson S J, Kagale S, Navabi Z K, Tang L, Horner K N, He Z S, Bancroft I, Chalhoub B, Sharpe A G, Parkin I A P. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat Plants, 2020, 6: 929-941.
doi: 10.1038/s41477-020-0735-y |
[24] |
Yang J H, Liu D Y, Wang X W, Ji C M, Cheng F, Liu B N, Hu Z Y, Chen S, Pental D, Ju Y H, Yao P, Li X M, Xie K, Zhang J H, Wang J L, Liu F, Ma W W, Shopan J, Zheng H, Mackenzie S A, Zhang M. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet, 2016, 48: 1225-1232.
doi: 10.1038/ng.3657 |
[25] |
Visscher P M, Brown M A, Mccarthy M I, Yang J. Five years of GWAS discovery. Am J Human Genet, 2012, 90: 7-24.
doi: 10.1016/j.ajhg.2011.11.029 |
[26] | 钱秀珍, 胡琼, 伍晓明. 中国芥菜型油菜的主要特性. 作物品种资源, 1991, (2):14-15. |
Qian X Z, Hu Q, Wu X M. The main characteristics of Chinese mustard. Crop Variety Resour, 1991, (2):14-15 (in Chinese). | |
[27] | 刘忠松, 游亮, 杨柳, 陈浩, 杨斌, 康雷. 芥菜的起源与驯化探索. 中国油料作物学报, 2018, 40: 649-655. |
Liu Z S, You L, Yang L, Chen H, Yang B, Kang L. Origin and domestication of Brassica juncea Czern. et Coss. Chin J Oil Crop Sci, 2018, 40: 649-655 (in Chinese with English abstract). |
[1] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[2] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[3] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[4] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[5] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[6] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[7] | 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098. |
[8] | 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70. |
[9] | 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331. |
[10] | 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724. |
[11] | 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73. |
[12] | 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430. |
[13] | 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878. |
[14] | 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805. |
[15] | 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612. |
|