欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1333-1345.doi: 10.3724/SP.J.1006.2022.14102

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于783份大豆种质资源的叶柄夹角全基因组关联分析

陈玲玲1,2(), 李战1, 刘亭萱1, 谷勇哲2, 宋健1,*(), 王俊1,*(), 邱丽娟1,2,*()   

  1. 1长江大学, 湖北荆州 434025
    2农作物基因资源与遗传改良国家重大科学工程 / 农业农村部种质资源利用重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2021-06-10 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-15
  • 通讯作者: 宋健,王俊,邱丽娟
  • 作者简介:E-mail: 905540072@qq.com
  • 基金资助:
    大豆种质资源保存(19211205);荆州市科技计划项目(2020CB21-28)

Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.)

CHEN Ling-Ling1,2(), LI Zhan1, LIU Ting-Xuan1, GU Yong-Zhe2, SONG Jian1,*(), WANG Jun1,*(), QIU Li-Juan1,2,*()   

  1. 1Yangtze University, Jingzhou 434025, Hubei, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-06-10 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-15
  • Contact: SONG Jian,WANG Jun,QIU Li-Juan
  • Supported by:
    Preservation of Soybean Germplasm Resources(19211205);Jingzhou Science and Technology Plan Project(2020CB21-28)

摘要:

叶柄夹角是影响植株高效受光态势的重要因素, 通过调节叶柄夹角实现大豆株型改良, 对大豆产量提高非常重要。大豆叶柄夹角为数量性状, 目前大多数研究处于QTL定位阶段, 已报道的控制叶柄夹角GmILPA1基因也是从突变体中克隆得到, 因此亟须发掘更多调控基因及优异等位变异, 以促进大豆叶柄夹角调控机制的解析及育种利用。本研究于2019年和2020年分别在海南、北京种植783份和690份大豆种质资源并调查叶柄夹角表型, 通过分布于大豆全基因组的单核苷酸多态性(SNP)标记对叶柄夹角进行关联分析。结果表明, 不同节位叶柄夹角呈现正态分布, 属于典型的数量遗传特征。全基因组关联分析共统计到325个与叶柄夹角显著相关的SNP位点, 在顶部节位关联到51个SNP位点, 中部节位关联到230个SNP位点, 底部节位关联到10个SNPs位点, 3个节位的平均值关联到34个SNP位点。显著位点LD block进一步分析得到3个候选基因, 第1个是生长素类调节蛋白相关的基因Glyma.05G059700, 在茎尖分生组织中特异性表达, 第2个是生长素反应因子(AFR)类蛋白相关基因Glyma.06G076900, 在叶片和茎尖分生组织中高表达; 第3个是COP9信号体复合物相关的基因Glyma.06G076000, 在叶片、茎尖分生组织以及茎中均高表达。

关键词: 大豆, 叶柄夹角, 全基因组关联分析

Abstract:

Petiole angle is one of the important factors that affects the high-efficiency light posture of plants. It is very important to improve soybean plant architecture by adjusting the leaf angle petioles. Soybean petiole angle is a quantitative trait, which is limited to QTLs mapping for most studies up to date. The reported gene GmILPA1controlling leaf petiole angle gene was cloned from mutants. Identification of more regulatory genes and elite alleles is urgent both for the clarification of genetic mechanism for petiole angle and its breeding utilization. In this study, 783 and 690 soybean germplasms were phenotypic for petiole angle in Hainan and Beijing in 2019 and 2020, respectively, and genome-wide associated study (GWAS) were performed using genome-wide distributed SNPs. Results showed that the petiole angle at different nodes (top, middle, and bottom nodes) were in normal distribution, suggesting that the trait of typical quantitative was inheritance. A total of 325 SNPs associated with petiole angle were identified by two-point GWAS analysis in two years, including 51, 230, 10, and 34 SNPs for petiole angles of the top, middle, bottom, and mean value of different nodes, respectively. Three candidate genes (Glyma.05G059700: auxin regulatory protein, Glyma.06G076900: AFR, and Glyma.06G076000: COP9) were obtained by LD block analysis. Transcriptional analysis revealed that all these three candidate genes had high expression level in shoot apical meristem (SAM), however, high expression level were also identified in leaf for Glyma.06G076900, leaf and stem for Glyma.06G076000.

Key words: soybean, leaf petiole angle, GWAS

图1

783份大豆材料地理分布"

表1

690份材料2年2点叶柄夹角基本数据分析"

地点
Location
节位
Node
极大值
Max (°)
极小值
Min (°)
均值
Average (°)
标准差
Standard deviation (°)
变异系数
Coefficient of variation(%)
2019年海南
2019 Hainan
顶部Top 110.6 17.0 41.0 12.0 29.3
中部Middle 109.9 14.6 39.8 10.7 26.9
底部Bottom 99.8 21.7 57.6 13.0 22.6
平均值Average 104.2 24.4 46.1 9.9 21.5
2020年北京
2020 Beijing
顶部Top 111.9 22.0 48.4 14.1 29.1
中部Middle 119.5 22.0 49.5 10.3 20.8
底部Bottom 108.9 27.2 55.9 11.2 20.0
平均值Average 99.1 27.5 51.3 8.4 16.4

图2

自然群体叶柄夹角表型分布 A、C、E为2019海南顶部、中部和底部节位叶柄夹角分布频率直方图, 每个样本3个重复; B、D、F为2020北京顶部、中部和底部节位叶柄夹角频率分布直方图, 每个样本3个重复。"

表2

2年2点不同节位叶柄夹角相关性分析"

地点
Location
节位
Node
北京Beijing 海南Hainan
顶部Top 中部Middle 底部Bottom 顶部Top 中部Middle 底部Bottom
北京
Beijing
顶部Top 1
中部Middle 0.203** 1
底部Bottom 0.142** 0.419** 1
海南
Hainan
顶部Top 0.088* -0.068 -0.119* 1
中部Middle 0.042 -0.014 -0.048 0.601** 1
底部Bottom 0.004 -0.082* -0.068 0.426** 0.584** 1

图3

2年2点表型差异性分析 A: 2年2点相同节位表型差异性显著性分析; B: 不同差异等级材料比例分析; C: 2年表型差异在0°~20°材料地理分布; D: 2年表型差异在21°~40°材料地理分布; E: 2年表型差异大于40°材料地理分布。"

图4

2年2点各个节位叶柄夹角GWAS定位 A~D: 海南顶部、中部、底部节位叶柄夹角和3个节位叶柄夹角平均值关联分析Q-Q plot图和Manhattan图; E~H: 北京顶部、中部、底部节位叶柄夹角和3个节位叶柄夹角平均值关联分析Q-Q plot图和Manhattan图。"

表3

各个节位叶柄夹角均关联显著SNP"

地点
Location
节位
Node
染色体
Chr.
SNP数目
SNP number
区间位置
Position interval
极显著SNP位置
Peak SNP position
等位基因型
Alleles
-log10 P值极大值
(-log10 Pmax)
已报道区间
Reported interval
海南Hainan
顶部Top 6 34 20081726-29191958 24044918 A/G 9.08
顶部Top 18 2 33523827-33523832 33523832 G/T 6.91
中部Middle 4 4 5596149-15210458 15210440 C/A 7.42
中部Middle 9 3 17234567-17234585 17234573 T/A 6.23
底部Bottom 1 5 3190286-3193332 3190286 A/T 7.21
平均值Average 5 3 5476726-5488204 5476976 A/C 11.37
北京Beijing
顶部Top 3 2 10230350-10230362 10230350 A/T 7.72
顶部Top 3 6 17497236-17497310 17497236 C/T 8.41
顶部Top 7 2 21264942-26216740 21264942 G/A 8.08
顶部Top 11 3 17811042-17811056 17811042 C/T 7.45 [9]
顶部Top 17 2 37154449-39977197 37154449 C/A 12.11 [9]
中部Middle 6 131 5787577-5947566 5889343 A/G 8.33
中部Middle 6 5 20003640-20973899 20071106 A/G 11.92
中部Middle 13 49 37043663-37156881 37117542 A/G 8.71
中部Middle 14 5 15953346-19558649 15953346 A/G 9.23 [9]
中部Middle 14 6 24281424-25306741 24281424 A/G 9.35 [9]
中部Middle 14 3 27024699-27783925 27076700 C/T 9.35 [9]
中部Middle 14 5 29151458-30357161 29151458 A/G 9.96 [9]
中部Middle 14 19 32044124-41988610 32044124 A/G 9.35 [9]
中部Middle 19 2 37695290-37695805 37695805 G/T 7.13
中部Middle 19 3 46080617-46082050 46080617 C/G 10.25
底部Bottom 3 3 1997994-1998818 1997994 C/G 7.35
底部Bottom 19 2 41151600-41169499 41169499 C/T 7.27
平均值Average 6 31 5859032-5958396 5948057 A/G 8.06

图5

显著位点分析 A: 极显著SNP位点Gm05_5476976等位基因差异显著性分析, 其中AA和CC表示该位点出现AA和CC纯合的频率, AC表示该位点出现AC杂合的频率; B: 极显著SNP位点Gm05_5476976 LD block分析, 其中红色阈值线上的红点表示在Gm05_5476976 LD block区域内与叶柄夹角性状紧密连锁的位点; C: 极显著SNP位点Gm06_5948057等位基因差异显著性分析, 其中AA和GG表示该位点出现AA和GG的频率, GA表示该位点出现GA杂合的频率; D: 极显著SNP位点Gm06_24044918 LD block分析, 其中红色阈值线上的红点表示在Gm06_24044918 LD block区域内与叶柄夹角性状紧密连锁的位点。"

图6

候选基因表达谱 A: Gm05_5476976 LD block区间内候选基因表达谱; B: Gm06_24044918 LD block区间内候选基因表达谱。"

[1] Gao J S, Yang S X, Cheng W, Fu Y F, Leng J T, Yuan X H, Jiang N, Ma J X, Feng X Z. GmILPA1, encoding an APC8-like protein, controls leaf petiole angle in soybean. Plant Physiol, 2017, 174: 1167-1176.
[2] Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased leaf angle1, a raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011, 23: 4334-4347.
doi: 10.1105/tpc.111.093419
[3] 廖慧敏, 张启军, 秦海龙, 夏士健, 宗寿余, 高艳红. 一个籼稻叶夹角新基因的激素敏感性分析和基因定位. 江苏农业学报, 2014, 30: 1198-1203.
Liao M H, Zhang Q J, Qin H L, Xia S J, Zong S Y, Gao Y H. Hormone sensitivity and genetic mapping of a new leaf angle gene in rice (Oryza sativa L.). Jiangsu J Agric Sci, 2014, 30: 1198-1203 (in Chinese with English abstract).
[4] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492-496.
Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J. Study on the relationship between plant type and population photosynthesis in maize. Acta Agron Sin, 1995, 21: 492-496 (in Chinese with English abstract).
[5] 李登海, 张永慧, 杨今胜, 柳京国. 育种与栽培相结合紧凑型玉米创高产. 玉米科学, 2004, 12(1):69-71.
Li D H, Zhang Y H, Yang J S, Liu J G. High yield of compact maize by combination of breeding and cultivation. J Maize Sci, 2004, 12(1):69-71 (in Chinese with English abstract).
[6] Stewart D W, Costa C, Dwyer L M, Smith D L, Hamilton R I, Ma B L. Canopy structure, light interception, and photosynthesis in maize. Agron J, 2003, 95: 1465-1474.
doi: 10.2134/agronj2003.1465
[7] Lu M, Zhou F, Xie C X, Li M S, Xu Y B, Marilyn W, Zhang S H. Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas, 2007, 29: 1131-1138.
[8] Liu S L, Zhang M, Feng F, Tian Z X. Toward a “green revolution” for soybean. Mol Plant, 2020, 13: 688-697.
doi: 10.1016/j.molp.2020.03.002
[9] 王存虎, 刘东, 许锐能, 杨永庆, 廖红. 大豆叶柄角的QTL定位分析. 作物学报, 2020, 46: 9-19.
doi: 10.3724/SP.J.1006.2020.94056
Wang C H, Liu D, Xu R N, Yang Y Q, Liao H. Mapping of QTLs for leafstalk angle in soybean. Acta Agron Sin, 2020, 46: 9-19 (in Chinese with English abstract).
[10] 王吴彬, 何庆元, 杨红燕, 向仕华, 赵团结, 邢光南, 盖钧镒. 大豆分枝数和叶柄夹角的相关野生片段分析. 中国农业科学, 2012, 45: 4749-4758.
Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Xing G N, Gai J Y. Detection of wild segments associated with number of branches on main stem and leafstalk angle in soybean. Sci Agric Sin, 2012, 45: 4749-4758 (in Chinese with English abstract).
[11] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1693-1702.
Chen L L, Liu L X, Gu Y Z, Song J, Wang J, Qiu L Y. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. J Plant Genet Resour, 2021, 22: 1693-1702.
[12] Murray M G, Thompson C L, Wendel J F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
pmid: 7433111
[13] Lyu Y, Guo Z L, Li X K, Ye H Y, Li X H, Xiong L Z. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ, 2016, 39: 556-570.
doi: 10.1111/pce.12635
[14] 葛芳君, 赵磊, 刘俊, 周旻馨, 郭毅, 张庆军. 基于Pearson相关系数的老年人社会支持与心理健康相关性研究的Meta分析. 中国循证医学杂志, 2012, 12: 1320-1329.
Ge F J, Zhao L, Liu J, Zhou M X, Guo Y, Zhang Q J. Correlation between social support and mental health of the aged based on pearson correlation coefficient: a meta-analysis. Chin J Evidence-Based Med, 2012, 12: 1320-1329 (in Chinese with English abstract).
[15] 王五宏. 串番茄株型性状遗传及与耐弱光性关系的研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2008.
Wang W H. Inheritance of Plant Type Characteristics and the Relationship Between Plant Type and Low Light Density Tolerance in Truss Tomato. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2008 (in Chinese with English abstract).
[16] 裴文东, 张仁和, 王国兴, 雷文妮, 雷格丽, 高敏, 张宏军. 玉米冠层结构和群体光合特性对增密的响应. 玉米科学, 2020, 28(3):92-98.
Pei W D, Zhang R H, Wang G X, Lei W N, Lei G L, Gao M, Zhang H J. Responses of canopy structure and population photosynthetic traits on increased planting density of different maize cultivars. J Maize Sci, 2020, 28(3):92-98 (in Chinese with English abstract).
[17] 徐梓乘, 杨恒山, 张玉芹. 玉米冠层结构对种植密度的响应. 内蒙古民族大学学报(自然科学版), 2016, 31: 298-301.
Xu Z C, Yang H S, Zhang Y Q. Response of different planting densities to corn canopy structure. J Inner Mongolia Univ Nat, 2016, 31: 298-301 (in Chinese with English abstract).
[18] 何佳宾, 李叶蓓, 聂言顺, 张萍, 郭正宇, 张中东, 陶洪斌, 王璞. 耐密性玉米冠层结构对密度的响应. 玉米科学, 2016, 24(3):69-77.
He J B, Li Y B, Nie Y S, Zhang P, Guo Z Y, Zhang Z D, Tao H B, Wang P. Canopy structure of density-resistant maize cultivars under different plant densities. J Maize Sci, 2016, 24(3):69-77 (in Chinese with English abstract)
[19] 王永学. 玉米抗倒伏有关性状遗传的初步研究. 河南农业大学硕士学位论文, 河南郑州, 2011.
Wang Y X. Primary Study of Inheritance on Lodging Resistance Traits in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2011 (in Chinese with English abstract).
[20] Martin F, Lindsey A H, Allison E C, Nicholas R S, David E F, Elizabeth V V. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta, 2003, 216: 366-376.
doi: 10.1007/s00425-002-0881-7
[21] 陈志娜. 光信号调控水稻叶片直立性的机制研究. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Chen Z N. The Mechanism Research of the Regulation of Rice Leaf Erectness by Light Signaling. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[22] Asahina M, Tamaki Y, Sakamoto T, Shibata K, Nomura T, Yokota T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 2014, 104: 21-29.
doi: 10.1016/j.phytochem.2014.04.017
[23] Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J. M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010, 42: 355-360.
doi: 10.1038/ng.546
[24] Cordell H J, Clayton D G. Genetic association studies. Lancet, 2005, 366: 1121-1131.
doi: 10.1016/S0140-6736(05)67424-7
[25] Nordborg M, Weigel D. Next-generation genetics in plants. Nature, 2008, 456: 720-723.
doi: 10.1038/nature07629
[26] Franke A, McGovern D P, Barrett J C, Wang K, Radford-Smith G L, Ahmad T, Lees C W, Balschun T, Lee J, Roberts R, Anderson C A, Bis J C, Bumpstead S, Ellinghaus D, Festen E M, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew C G, Montgomery G W, Prescott N J, Raychaudhuri S, Rotter J I, Schumm P, Sharma Y, Simms L A, Taylor K D, Whiteman D, Wijmenga C, Baldassano R N, Barclay M, Bayless T M, Brand S, Büning C, Cohen A, Colombel J F, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery S L, Halfvarson J, Verspaget H W, Hugot J P, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panés J, Phillips A, Proctor D D, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart A H, Stokkers P C, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan S R, Brant S R, Rioux J D, D’Amato M, Weersma R K, Kugathasan S, Griffiths A M, Mansfield J C, Vermeire S, Duerr R H, Silverberg M S, Satsangi J, Schreiber S, Cho J H, Annese V, Hakonarson H, Daly M J, Parkes M. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet, 2010, 42: 1118-1125.
doi: 10.1038/ng.717 pmid: 21102463
[27] Chasman D I, Schürks M, Anttila V, de Vries B, Schminke U, Launer L J, Terwindt G M, van den Maagdenberg A M, Fendrich K, Völzke H, Ernst F, Griffiths L R, Buring J E, Kallela M, Freilinger T, Kubisch C, Ridker P M, Palotie A, Ferrari M D, Hoffmann W, Zee R Y, Kurth T. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet, 2011, 43: 695-698.
doi: 10.1038/ng.856 pmid: 21666692
[28] Andreassen O A, Djurovic S, Thompson W K, Schork A J, Kendler K S, O’Donovan M C, Rujescu D, Werge T, van de Bunt M, Morris A P, McCarthy M I. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Human Genet, 2013, 92: 197-209.
doi: 10.1016/j.ajhg.2013.01.001
[29] Evangelou E, Ioannidis J P A. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet, 2013, 14: 379-389.
doi: 10.1038/nrg3472
[30] Pickrell J K, Berisa T, Liu J Z, Ségurel L, Tung J Y, Hinds D A. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet, 2016, 48: 709-717.
doi: 10.1038/ng.3570 pmid: 27182965
[31] 万何平, 陈禅友, 陈高, 曹新华, 夏明. 全基因组关联分析在大豆遗传学上的研究进展. 江汉大学学报(自然科学版), 2019, 47(3):197-203.
Wan H P, Chen C Y, Chen G, Cao X H, Xia M. Research status of genome-wide association study in soybean. J Jianghan Univ (Nat Sci Edn), 2019, 47(3):197-203 (in Chinese with English abstract).
[32] 曹子林. 中国沙棘平茬萌蘖内源激素调控的分子机制. 北京林业大学博士学位论文, 北京, 2019.
Cao Z L. Molecular Mechanisms of Endogenous Hormone Regulation in Stump Sprouting of Hippophae rhamnoides subsp. Sinensis. PhD Dissertation of Beijing Forestry University, Beijing, China, 2019 (in Chinese with English abstract).
[33] 海日汗. OsARF6调控水稻叶夹角的分子机制研究. 内蒙古师范大学硕士学位论文, 内蒙古呼和浩特, 2015.
Hai R H. Study on the Mechanism of OsARF6 Controlling Leaf Angle in Rice (Oryza sativa L.). MS Thesis of Inner Mongolia Normal University, Hohhot, Inner Mongolia, China, 2015 (in Chinese with English abstract).
[34] 张赛娜. OsARF19调控水稻叶夹角的分子机制. 浙江大学博士学位论文, 浙江杭州, 2014.
Zhang S N. Molecular Mechanism of OsARF19 Controlling Leaf Angle in Rice (Oryza sativa). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2014 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!